Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 13
Number of page(s) 9
Published online 05 April 2018
  • Aránguiz-Acuña A, Ramos-Jiliberto R, Sarma N, Sarma SSS, Bustamante RO, Toledo V. 2010. Benefits, costs and reactivity of inducible defences: an experimental test with rotifers. Freshwat Biol 55: 2114–2122. [CrossRef] [Google Scholar]
  • Brett MT. 1992. Chaoborus and fish mediated influences on Daphnia longispina population structure, dynamics and life history strategies. Oecologia 89: 69–77. [CrossRef] [PubMed] [Google Scholar]
  • Case TJ. 2000. An Illustrated Guide to Theoretical Ecology, Oxford: Oxford University Press. [Google Scholar]
  • De Meester L, Dawidowicz P, van Gool E, Loose CJ. 1999. Ecology and evolution of predator-induced behavior of zooplankton: depth selection behavior and diel vertical migration. In: Tollrian R, Harvell CD, eds. The Ecology and Evolution of Inducible Defenses. Princeton, NJ: Princeton University Press, pp. 160–176. [Google Scholar]
  • Dumont HJ, Sarma SSS. 1995. Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density. Hydrobiologia 306: 97–107. [CrossRef] [Google Scholar]
  • García CE, Chaparro-Herrera DJ, Nandini S, Sarma SSS. 2007. Life history strategies of Brachionus havanaensis subject to kairomones of vertebrate and invertebrate predators. Chem Ecol 23: 303–313. [CrossRef] [Google Scholar]
  • Gilbert JJ. 1963. Mictic female production in rotifer Brachionus calyciflorus. J Exp Zool 153: 113–124. [CrossRef] [Google Scholar]
  • Gilbert JJ. 1967. Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Arch Hydrobiol 64: 1–62. [Google Scholar]
  • Gilbert JJ. 1999. Kairomone-induced morphological defenses in rotifers. In: Tollrian R, Harvell CD, eds. The Ecology and Evolution of Inducible Defenses. Princeton, New Jersey: Princeton University Press, pp. 127–141. [Google Scholar]
  • Gilbert JJ. 2013. The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis. J Plankt Res 35: 461–472. [CrossRef] [Google Scholar]
  • Gilbert JJ. 2014. Morphological and behavioral responses of a rotifer to the predator Asplanchna. J Plankt Res 36: 1576–1584. [Google Scholar]
  • Gilbert JJ. 2017. Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biol Rev 92: 964–992. [CrossRef] [Google Scholar]
  • Guo R, Snell TW, Yang J. 2011. Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator- and competitor-conditioned media. Hydrobiologia 658: 163–171. [CrossRef] [Google Scholar]
  • Halbach U. 1970. Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4: 262–318. [CrossRef] [PubMed] [Google Scholar]
  • Hairston NG. 1987. Diapause as a predator avoidance adaptation. In: Kerfoot WC, Sih A, eds. Predation: Direct and Indirect Impacts on Aquatic Communities. Hanover, U.S.A.: University Press of New England, 281–290. [Google Scholar]
  • Lass S, Spaak P. 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239. [CrossRef] [Google Scholar]
  • Larsson P, Dodson S. 1993. Chemical communication in planktonic animals. Arch. Hydrobiol 129: 129–155. [Google Scholar]
  • Li S-H, Zhu H, Xia Y-Z, Yu M-J, Liu K-S, Ye Z, Chen Y-Y. 1959. The mass culture of unicellular green algae. Acta Hydrobiol Sin 4: 462–472. [Google Scholar]
  • Lüning J. 1992. Phenotypic plasticity of Daphnia pulex in the presence of invertebrate predators: morphological and life history responses. Oecologia 92: 383–390. [CrossRef] [PubMed] [Google Scholar]
  • Machádek J. 1991. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia 225: 193–197. [CrossRef] [Google Scholar]
  • Ogello EO, Kim H-J., Suga K, Hagiwara A. 2016. Life table demography and population growth of the rotifer Brachionus angularis in Kenya: influence of temperature and food density. Afr J Aquat Sci 41: 329–336. [CrossRef] [Google Scholar]
  • Pavón-Meza EL, Sarma SSS, Nandini S. 2008. Combined effects of temperature, food availability and predator's (Asplanchna girodi) allelochemicals on the demography and population growth of Brachionus havanaensis (Rotifera). Allelopathy J 21: 95–106. [Google Scholar]
  • Peña-Aguado F, Morales-Ventura J, Nandini S, Sarma SSS. 2008. Influence of vertebrate and invertebrate infochemicals on the population growth and epizoic tendency of Brachionus rubens (Ehrenberg) (Rotifera: Brachionidae). Allelopathy J 22: 123–130. [Google Scholar]
  • Peng B, Cao H-Y, Pan L, Xi Y-L. 2016. Clonal diversity of population growth parameter of Brachionus angularis from Lake Jinghu. J. Anhui Normal Univ. (Nat Sci) 39: 391–376. [Google Scholar]
  • Pianka ER. 1988. Evolutionary Ecology (3rd edn). New York: Harper & Row. [Google Scholar]
  • Pijanowska J, Stolpe G. 1996. Summer diapause in Daphnia as a reaction to the presence of fish. J Plank Res 18: 1407–1412. [CrossRef] [Google Scholar]
  • Pijanowska J, Kowalczewski A. 1997. Cues from injured Daphnia and from cyclopoids feeding on Daphnia can modify life histories of conspecifics. Hydrobiologia 350: 99–103. [CrossRef] [Google Scholar]
  • Poole RW. 1974. An Introduction to Quantitative Ecology. New York: McGraw-Hill. [Google Scholar]
  • Pourriot R. 1986. Les rotifers − biologie. Aquaculture 5: 201–221. [Google Scholar]
  • Radix P, Severin G, Schramm KW, Kettrup A. 2002. Reproduction disturbances of Brachionus calyciflorus (rotifer) for the screening of environmental endocrine disruptors. Chemosphere 47: 1097–1101. [CrossRef] [PubMed] [Google Scholar]
  • Sarma SSS, Nandini S, Gulati RD. 2002. Cost of reproduction in selected species of zooplankton (rotifers and cladocerans). Hydrobiologia 481: 89–99. [CrossRef] [Google Scholar]
  • Sarma SSS, Resendiz RAL, Nandini S. 2011. Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwelli (Rotifera: Asplanchnidae). Hydrobiologia 662: 179–187. [CrossRef] [Google Scholar]
  • Segers H. 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564: 1–104. [Google Scholar]
  • Ślusarczyk M. 1995. Predator-induced diapause in Daphnia. Ecology 76: 1008–1013. [CrossRef] [Google Scholar]
  • Ślusarczyk M. 1999. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia 119: 159–165. [CrossRef] [PubMed] [Google Scholar]
  • Ślusarczyk M. 2001. Food threshold for diapause in Daphnia under the threat of fish predation. Ecology 82: 1089–1096. [CrossRef] [Google Scholar]
  • Snell TW. 1986. Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar. Biol. 92: 157–162. [CrossRef] [Google Scholar]
  • Soto CS, Sarma SSS. 2009. Morphometric changes in Lecane stokesii (Pell, 1890) (Rotifera: Lecanidae) induced by allelochemicals from the predator Asplanchnopus multiceps (Schrank, 1793). Allelopathy J. 24: 215–222. [Google Scholar]
  • Spitze K. 1991. Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution 45: 82–92. [CrossRef] [PubMed] [Google Scholar]
  • Stelzer C. 2005. Evolution of rotifer life histories. Hydrobiologia 546: 335–346. [CrossRef] [Google Scholar]
  • Stibor H. 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia (Berlin) 92: 162–165. [Google Scholar]
  • Tollrian R, Dodson SI. 1999. Inducible defenses in Cladocera: constraints, costs, and multipredator environments. In: Tollrian R, Harvell CD, eds. The Ecology and Evolution of Inducible Defenses. New York Princeton, NJ: Princeton University Press, 177–202. [Google Scholar]
  • Vanni MJ. 1987. Indirect effect of predators on age-structured prey populations: planktivorous fish and zooplankton. In: Kerfoot WC, Sih A, eds. Predation: Direct and indirect impacts on aquatic communities. Hanover, New Hampshire: New England Press, 149–160. [Google Scholar]
  • Wallace RL, Snell TW, Ricci C. 2006. Rotifera. Vol 1: Biology, ecology and systematics. In: Segers H, Dumont HJF, eds. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 23, Kenobi Productions. The Hague: Ghent/Backhuys Academic Publishing. [Google Scholar]
  • Walz N. 1987. Comparative population dynamics of the rotifers Brachionus angularis and Keratella cochlearis. Hydrobiologia 147: 209–211. [CrossRef] [Google Scholar]
  • Williams DD. 1997. Temporary ponds and their invertebrate community. Aquat Conserv Mar Freshwater Ecosyst 7: 105–117. [Google Scholar]
  • Xi Y-L, Feng L-K. 2004. Effects of thiophanate-methyl and glyphosate on asexual and sexual reproduction in the rotifer Brachionus calyciflorus Pallas. Bull Environ Contam Toxicol 73: 644–651. [PubMed] [Google Scholar]
  • Xi Y-L, Chu Z-X, Xu X-P. 2007. Effect of four organochlorine pesticides on the reproduction of freshwater rotifer Brachionus calyciflorus Pallas. Environ Toxicol Chem 26: 1695–1699. [CrossRef] [PubMed] [Google Scholar]
  • Xie P, Xi Y-L, Wen X-L, Zhou J, Li Y, Niu X-X, Wang A-M, Wang J-X. 2015. Responses of the spatio-temporal dynamics of rotifer community structure to the concentrations of N and P, and the effect of top-down in two lakes. Acta Ecol Sin 35: 4763–4776. [Google Scholar]
  • Yin XW, Zhou YC, Li XC, Li WX. 2015. Reduced investment in sex as a cost of inducible defence in Brachionus calyciflorus (Rotifera). Freshwat Biol 60: 89–100. [Google Scholar]
  • Yin XW, Jin W, Zhou YC, Wang PP, Zhao W. 2017. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences. Sci Rep, 7, 4488. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Zhou A, Xi Y-L, Sun Q, Ning L-F, Xie P, Wen X-L, Xiang X-L. 2017. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake . Hydrobiologia DOI:10.1007/s10750-017-3407-9. [PubMed] [Google Scholar]
  • Zhang ZS, Huang XF. 1991. Method for Study on Freshwater Plankton Science Press, Beijing. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.