Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 12
Number of page(s) 8
Published online 16 March 2018
  • Agrawal A.A. Fishbein M., 2006. Plant defense syndromes. Ecology, 87, 132–149. [CrossRef] [Google Scholar]
  • Agrawal A.A. Kotanen P.M., 2005. Herbivores and the success of exotic plant’s: a phylogenetically controlled experiment. Ecol. Lett., 6, 712–715. [CrossRef] [Google Scholar]
  • Bakker E.S., Wood K.A., Pagés J.F., et al. 2016. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat. Bot., 135, 18–36. [CrossRef] [Google Scholar]
  • Blumenthal D., Mitchell C.E., Pysek P., Jarosik V., 2009. Synergy between pathogen release and resource availability in plant invasion. PNAS, 106, 7899–7904. [CrossRef] [Google Scholar]
  • Bornette G., Puijalon S., 2011. Response of aquatic plant's to abiotic factors: a review. Aquat. Sci., 73, 1–14. [Google Scholar]
  • Boros G., Sondergaard M., Takacs P., Vari A., Tatrai I., 2011. Influence of submerged macrophytes, temperature, and nutrient loading on the development of redox potential around the sediment-water interface in lakes. Hydrobiologia, 665, 117–127. [CrossRef] [Google Scholar]
  • Bremner J.M. 1965. Total Nitrogen. In: C.A. Black (ed.), Methods of soil analysis. Part 2: Chemical and microbial properties. Number 9 in series Agronomy. American Society of Agronomy, Inc. Publisher, Madison, USA, 1049–1178. [Google Scholar]
  • Camargo A.F.M., Pezzato M.M., Henry-Silva G.G., Assumpcao A.M. 2006. Primary production of Utricularia foliosa L., Egeria densa Planchon and Cabomba furcata Schult & Schult.f from rivers of the coastal plain of the State of Sao Paulo, Brazil. Hydrobiologia, 570, 35–39. [CrossRef] [Google Scholar]
  • Carey M.P., Sethi S.A., Larsen S.J., Rich C.F., 2016. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience. Hydrobiologia, 777, 1–19. [CrossRef] [Google Scholar]
  • Cebrian J., Lartigue J., 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol. Monogr., 74, 237–259. [CrossRef] [Google Scholar]
  • Clayton J., Edwards T., 2006. Aquatic plant’s as environmental indicators of ecological condition in New Zealand lakes. Hydrobiologia, 570, 147–157. [CrossRef] [Google Scholar]
  • Chun Y.J., Kleunen M.V., Dawson W., 2010. The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol. Lett., 13, 937–946. [PubMed] [Google Scholar]
  • da Ros N., Ostermeyer R., Roques A., Raimbault P., 1993. Insect damage to cones of exotic conifer species introduced in arboreta. Interspecific variations within the genus Picea. J. App. Ento., 115, 113–133. [CrossRef] [Google Scholar]
  • Dugdale T.M., Clements D., Hunt T.D., Butler K.L., 2012. Survival of a submerged aquatic weed (Egeria densa) during lake drawdown within mounds of stranded vegetation. Lake Reser. Manag., 28, 153–157. [CrossRef] [Google Scholar]
  • Elger A., Willby N.J., 2003. Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Funct. Ecol., 17, 58–65. [CrossRef] [Google Scholar]
  • Ferreira F.A., Mormul, R.P., Thomaz, S.M., Pott A., Pott V.J., 2011. Macrophytes in the upper Paraná river floodplain: checklist and comparison with other large South American wetlands. Revista de Biologia Tropical 59, 541–556. [PubMed] [Google Scholar]
  • Feuillade J., 1961. Une plante aquatique nouvelle pour la France Elodea densa (Planch.) Casp. Bull. Soc. Linn. Nor., 10, 47–51. [Google Scholar]
  • Fraser L.H., Grime J., 1999. Interacting effects of herbivory and fertility on a synthesized plant community. J. Ecol., 87, 514–525. [CrossRef] [Google Scholar]
  • Fornoff F., Gross E.M., 2014. Induced defense mechanisms in an aquatic angiosperm to insect Herbivory. Oecologia, 175, 173–185. [CrossRef] [PubMed] [Google Scholar]
  • Gassmann A., Cock M.J.W., Shaw R., Evans H.C., 2006. The potential for biological control of invasive alien aquatic weeds in Europe: a review. Hydrobiologia, 570, 217–222. [CrossRef] [Google Scholar]
  • Grime J.P., Cornelissen J.H.C., Thompson K., Hodgson J.G., 1996. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos, 77, 489–494. [CrossRef] [Google Scholar]
  • Haramoto T., Ikusima I., 1988. Life cycle of Egeria densa Planch., na aquatic plant naturalized in Japan. Aquat. Bot., 30, 389–403. [CrossRef] [Google Scholar]
  • Keane R.M., Crawley M.J., 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol., 17, 164–170. [CrossRef] [Google Scholar]
  • Kornijow R., Gulati R.D.T., Ozimek T., 1995. Food preference of freshwater invertebrates: comparing fresh and decomposed angiosperm and a filamentous alga. Fresh. Biol., 33, 205–212. [CrossRef] [Google Scholar]
  • Lacoul P., Freedman B., 2006. Environmental influences on aquatic plant's in freshwater ecosystems. Environ. Rev., 14, 89–136. [Google Scholar]
  • Leslie A., 1992. Copper herbicide use-patterns in Florida waters. Florida Department of Natural Resources, Tallahassee, Florida, USA. [Google Scholar]
  • MacIsaac H.J., Eyraud A.P., Beric B., Ghabooli S.J. 2016. Can tropical macrophytes establish in the Laurentia Great Lakes? Hydrobiologia, 767, 165–174. [CrossRef] [Google Scholar]
  • Madsen T.V., Brix H., 1997. Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia, 110, 320–327. [CrossRef] [PubMed] [Google Scholar]
  • Martínez S.F., Celeste F.M., Poi A., 2013. Food preference Neochetina eichhorniae (Coleoptera: Curculionidae) by aquatic plants of different nutritional value. Rev. Colom. Entomol., 39, 81–87. [Google Scholar]
  • Mitchell C.E., Power A.G., 2003. Release of invasive plants from fungal and viral pathogens. Nature, 421, 625–627. [CrossRef] [PubMed] [Google Scholar]
  • Netten J.J.C., Arts G.H.P., Gylstar R., Vannes E.H., Scheffer M., Roijackers R.M.M., 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fund. App. Limnol., 177, 125–132. [CrossRef] [Google Scholar]
  • Newman R.M., Kerfoot W.C., Hanscom Z., 1996. Watercress allelochemical defends high-nitrogen foliage against consumption: effects on freshwater invertebrate herbivores. Ecology, 77, 2312–2323. [CrossRef] [Google Scholar]
  • Oksanen J., Blanchet F.G., Kindt R., et al. 2016. Vegan: Community Ecology Package. R package version 2. 3-4. [Google Scholar]
  • R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL [Google Scholar]
  • Riis T., Olesen B., Clayton J.S., Lambertini C., Brix H., Sorrell B. 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat. Bot., 102, 56–60. [Google Scholar]
  • Santamaria L., Van Vierssen W., 1997. Photosynthetic temperature responses of fresh- and brackish-water macrophytes: a review. Aquat. Bot., 58, 135–150. [CrossRef] [Google Scholar]
  • Smolders S., McGrath S.P., Lombi E., et al. 2003. Comparison of toxicity of zinc on soil microbial processes between laboratory-contamined and polluted field Soils. Environ. Toxicol., 22, 2592–2598. [CrossRef] [Google Scholar]
  • St John H., 1961. Monograph of the genus Egeria Planchon. Darwiniana, 12, 299–310. [Google Scholar]
  • Strauss S.Y., Agrawal A.A., 1999. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol., 14, 179–185. [CrossRef] [PubMed] [Google Scholar]
  • Sheldon S.P., 1987. The effects of herbivorous snails on submerged macrophyte communities in Minnesota lakes. Ecology, 68, 1920–1931. [CrossRef] [PubMed] [Google Scholar]
  • Takayanagi S., Takagi Y., Shimizu A., Hasegawa H., 2012. The shoot is important for high-affinity nitrate uptake in Egeria densa, a submerged vascular plant. J. Plant. Res., 125, 669–678. [CrossRef] [PubMed] [Google Scholar]
  • Thébaud C., Simberloff D., 2001. Are plants really larger in their introduced ranges? Am. Nat., 157, 231–236. [CrossRef] [PubMed] [Google Scholar]
  • Thiébaut G., 2007. Invasion success of non-indigenous aquatic and semi-aquatic plant’s in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biol. Inv., 9, 1–12. [CrossRef] [Google Scholar]
  • Thiébaut G., Di Nino F., 2009. Morphological variations of natural populations of an aquatic macrophyte Elodea nuttallii in their native and in their introduced ranges. Aquat. Inv., 4, 311–320. [CrossRef] [Google Scholar]
  • Thiébaut G., Gillard M., Deleu C., 2016. Growth, regeneration and colonisation of Egeria densa fragments : the effect of autumn temperature increases. Aquat. Ecol., 50, 175–185. [CrossRef] [Google Scholar]
  • Thiébaut G., Boiché A., Lemoine D., Barrat-Segretain M.H., 2017. Trade-offs between growth versus defence in two phylogenetically-close invasive species. Aquat. Ecol., 50, 1–11. [Google Scholar]
  • Thomaz S.M., Agostinho A.A., Gomes L.C., et al. 2012. Using space-for-time substitution and time sequence approaches in invasion ecology. Fresh Biol., 13, 2401–2410. [CrossRef] [Google Scholar]
  • Yarrow M., Marin V.H., Finlayson M., Tironi A., Delgado L.E., Fischer F., 2009. The ecology of Egeria densa Planchon (Liliopsida: alismatales): a wetland ecosystem engineer? Rev. Chil. Hist. Nat., 82, 299–313. [CrossRef] [Google Scholar]
  • Walling L.L., 2009. Adaptive defense responses to pathogens and insects. Plant. Innate. Immunity., 51, 551–612. [Google Scholar]
  • Walsh G.C., Dalto Y.M., Mattioli F.M., 2013. Biology and ecology of Brazilian elodea (Egeria densa) and its specific herbivore Hydrelia sp., in Argentina. Biol. Control., 58, 133–147. [Google Scholar]
  • Willis A., Thomas M., Lawton J., 1999. Is the increased vigour of invasive weeds explained by a trade-off between growth and herbivore resistance? Oecologia, 120, 632–640. [CrossRef] [PubMed] [Google Scholar]
  • Wolfe L.M., 2002. Why alien invaders succeed: Support for the Escape-from-Enemy Hypothesis. Am. Nat., 160, 705–711. [PubMed] [Google Scholar]
  • Xie Y., Luo W., Ren Bo., 2007. Morphological and physiological responses to sediment type and light availability in roots of the submerged plant Myriophyllum spicatum. Ann. Bot., 100, 1517–1523. [CrossRef] [PubMed] [Google Scholar]
  • Xiong W., Yu D., Wang Q., Liu C., Wang L., 2008. A snail prefers native over exotic freshwater plant's: implications for the enemy release hypotheses. Fresh. Biol., 53, 2256–2263. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.