Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 16
Number of page(s) 6
DOI https://doi.org/10.1051/limn/2018006
Published online 17 April 2018
  • Athibai S, Sanoamuang LO. 2008. Effect of temperature on fecundity, life span and morphology of long- and short-spined clones of Brachionus caudatus f. apsteini (Rotifera). Int Rev Hydrobiol 93: 690–699. [CrossRef] [Google Scholar]
  • Charlesworth B. 1994. Evolutioninage-structuredpopulations. Cambridge: Cambridge University Press. [Google Scholar]
  • Diéguez M, Modenutti B, Queimaliños C. 1998. Influence of abiotic and biotic factors on morphological variation of Keratella cochlearis (Gosse) in a small Andean. Hydrobiologia 387/388: 289–294. [CrossRef] [Google Scholar]
  • Eloranta P. 1982. Notes on the morphological variation of the rotifer species Keratella cochlearis (Gosse) s.l. in one eutrophic pond. J Plankton Res 4: 299–312. [CrossRef] [Google Scholar]
  • Garza-Mouriño G, Silva-Briano M, Nandini S, Sarma SSS, Castellanos-Páez ME. 2005. Morphological and morphometrical variations of selected rotifer species in response to predation: a seasonal study of selected Brachionid species from Lake Xochimilco (Mexico). Hydrobiologia 1: 169–179. [Google Scholar]
  • Ge YL, Xi YL, Ma J, Xu DD. 2012. Spatio-temporal variation of morphometric characteristics of Brachionus forficula in relation to ecological factors. Acta Ecol Sin 36: 5034–5042. [CrossRef] [Google Scholar]
  • Gilbert JJ. 1963. Mictic female production in rotifer Brachionus calyciflorus. J Exp Zool 153: 113–124. [CrossRef] [Google Scholar]
  • Gilbert JJ. 1999. Kairomone-induced morphological defenses in rotifers. In: Tollrian R, Harvell CD, eds. The ecology and evolution of inducible defenses. Princeton: Princeton University Press, pp. 127–141. [Google Scholar]
  • Gilbert JJ. 2012. Predator-induced defense in rotifers: developmental lags for morph transformations, and effect on population growth. Aquat Ecol 46: 475–486. [CrossRef] [Google Scholar]
  • Green JJ. 2005. Morphological variation of Keratella cochlearis (Gosse) in a backwater of the River Thames. Hydrobiologia 546: 189–196. [CrossRef] [Google Scholar]
  • Green JJ. 2007. Morphological variation of Keratella cochlearis (Gosse) in Myanmar (Burma) in relation to zooplankton community structure. Hydrobiologia 593: 5–12. [CrossRef] [Google Scholar]
  • Hillbricht-Ilkowska A. 1983. Morphological variation of Keratella cochlearis (Gosse) in Lake Biwa, Japan. Hydrobiologia 104: 297–305. [CrossRef] [Google Scholar]
  • Krebs CJ. 1985. Ecology: the experimental analysis of distribution and abundance. New York: Harper & Row Press, 800 p. [Google Scholar]
  • Li SH, Zhu H, Xia YZ, et al. 1959. The mass culture of nicellular green algae. Acta Hydrobiol Sin 4: 462–472. [Google Scholar]
  • Pavön-Meza EL, Sarma SSS, Nandini S. 2005. Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia 546: 353–360. [CrossRef] [Google Scholar]
  • Pejler B. 1980. Variation in the genus Keratella. Hydrobiologia 73: 207–213. [CrossRef] [Google Scholar]
  • Pianka ER. 1988. Evolutionary Ecology, 3rd ed. New York: Harper & Row Press. [Google Scholar]
  • Roff DA. 2002. Life history evolution. Sunderland Massachusetts: Sinauer Associates Inc. Press. [Google Scholar]
  • Sarma SSS, Resendiz RAL, Nandini S. 2011. Morphometric and demographic responses of Brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus Daday) in the presence of different densities of the predator Asplanchna brightwelli (Rotifera: Asplanchnidae). Hydrobiologia 662: 179–187. [CrossRef] [Google Scholar]
  • Stearns SC. 1992. The Evolution of life histories. Oxford: Oxford University Press. [Google Scholar]
  • Stemberger RS. 1988. Reproduction costs and hydrodynamic benefits of chemically induced defenses in Keratella tesutdo. Limnol Oceanogr 33: 593–606. [CrossRef] [Google Scholar]
  • Stemberger RS. 1990. Food limitation, spination and reproduction in Brachionus calyciflorus. Limnol Oceanogr 85: 33–44. [CrossRef] [Google Scholar]
  • Stemberger RS, Gilbert JJ. 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwater Biol 14: 639–648. [CrossRef] [Google Scholar]
  • Tollrian R, Duggen S, Weiss LC, Laforsch C, Kopp M. 2015. Density-dependent adjustment of inducible defenses. Sci Rep 5: 12736. [CrossRef] [PubMed] [Google Scholar]
  • Xi YL, Wang J, Xie P, Huang XF. 2002. Morphological variation of Keratella cochlearis (Rotatoria) in a shallow, eutrophic subtropical Chinese lake. J Freshwater Ecol 17: 447–454. [CrossRef] [Google Scholar]
  • Yin XW, Niu CJ. 2007. Polymorphism and morphotype transformations in the rotifer (Brachionus calyciflorus). Zool Res 28: 68–72. [Google Scholar]
  • Yin XW, Niu CJ. 2008. Polymorphism in stem females and successive parthenogenetic generations in Brachionus calyciflorus Pallas. Aquat Ecol 42: 415–420. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.