Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 17
Number of page(s) 11
Published online 18 April 2018
  • APHA, AWWA, WEF. 2012. Standard methods for examination of water and waste water, 22nd ed. Washington: American Public Health Association, 1360 p. [Google Scholar]
  • Arvola L, Salonen K. 2001. Plankton community of a polyhumic lake with and without Daphnia longispina (Cladocera). Hydrobiologia 445: 141–150. [CrossRef] [Google Scholar]
  • Beutler M, Wiltshire KH, Meyer B, et al. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72: 39–53. [CrossRef] [PubMed] [Google Scholar]
  • Białokoz W, Krzywosz T. 1992. Struktura ichtiofauny w jeziorach Wigierskiego Parku Narodowego. [Fish communities in lakes of the Wigry National Park]. In: Zdanowski B, ed. Lakes of Wigry National Park: trophic status and protection directions. PAN. Kom. Naukowy “Człowiek i środowisko” Zeszyty Naukowe 3, pp. 153–162. Polish. [Google Scholar]
  • Błędzki LA, Rybak JI. 2016. Freshwater Crustacean Zooplankton of Europe, Springer, 918 p. [Google Scholar]
  • Brooks JL, Dodson SI. 1965. Predation, body size and composition of plankton. Science 150: 28–35. [CrossRef] [PubMed] [Google Scholar]
  • Cudowski A, Górniak A, Hryniewicka M. 2013. Boron and manganese fractions in dystrophic lake waters (Wigry National Park, NE Poland). Limnol Review 13: 79–86. [Google Scholar]
  • Cudowski A, Pietryczuk A, Hauschild T. 2015. Aquatic fungi in relation to the physical and chemical parameters of water quality in the Augustów Canal. Fungal Ecol 13: 193–204. [CrossRef] [Google Scholar]
  • Culver DA, Brunskill GJ. 1969. Fayatteville Green Lake, New York. 5. Studies of primary production and zooplankton in a meromictic marl lake. Limnol Oceanogr 14: 862–873. [CrossRef] [Google Scholar]
  • Czeczuga B, Czerpak R. 1968. Studies on Dyes Found in Chlorobium limicola Nads. (Chlorobacteriaceae) from the Wadolek lake. Hydrobiologia 31: 561. DOI:10.1007/BF00134454. [CrossRef] [Google Scholar]
  • Del Giorgio PA, Cole JJ, Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton productivity in unproductive aquatic systems. Nature 385: 148–151. [CrossRef] [Google Scholar]
  • DeMott WR. 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol Oceanogr 27: 518–527. [CrossRef] [Google Scholar]
  • Drzymulska D, Zieliński P. 2013. Developmental changes in the historical and present-day trophic status of brown water lakes. Are humic water bodies a uniform aquatic ecosystem? Wetlands 33: 909–919. [CrossRef] [Google Scholar]
  • Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol Arch Hydrobiol 45: 513–522. [Google Scholar]
  • Feniova I, Dawidowicz P, Gladyshev MI, et al. 2015. Experimental effects of large-bodied Daphnia, fish and zebra mussels on cladoceran community and size structure. J Plankton Res 37: 611–625. [CrossRef] [Google Scholar]
  • Gilbert JJ. 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol Oceanogr 33: 1286–1303. [CrossRef] [Google Scholar]
  • Gladyshev MI, Sushchik NN, Anishchenko OV, et al. 2011. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia 165: 521–531. [CrossRef] [PubMed] [Google Scholar]
  • Gliwicz ZM, Kowalczewski A. 1981. Epilimnetic and hypolimnetic symptoms of eutrophication in Great Mazurian Lakes, Poland. Freshw Biol 11: 425–435. [CrossRef] [Google Scholar]
  • Gliwicz ZM, Rutkowska AE, Wojciechowska J. 2000. Daphnia populations in three interconnected lakes with roach as the principal planktivore. J Plankton Res 22: 1539–1557. [CrossRef] [Google Scholar]
  • Górniak A. 2017. A new version of the Hydrochemical Dystrophy Index to evaluate dystrophy in lakes. Ecol Indic 78: 566–573. [CrossRef] [Google Scholar]
  • Górniak A, Karpowicz M. 2014. Development of crustacean plankton in a shallow, polyhumic reservoir in the first 20 years after impoundment (northeast Poland). Inland Waters 4: 311–318. [CrossRef] [Google Scholar]
  • Górniak A, Jekatierynczuk-Rudczyk E, Dobrzyń P. 1999. Hydrochemistry of three dystrophic lakes in North eastern Poland. Acta Hydroch Hydrob 27: 12–18. [CrossRef] [Google Scholar]
  • Górniak A, Grabowska M, Dobrzyń P. 1999. Fitoplankton trzech jezior dystroficznych WPN. [Phytoplankton of three dystrophic lakes in Wigry National Park]. In Zdanowski B, Kamiński M, Martyniak A, eds. Funkcjonowanie i ochrona ekosystemów wodnych na obszarach chronionych. Wyd. IRŚ, Olsztyn, pp. 361–370. Polish. [Google Scholar]
  • Górniak A, Grabowska M, Jekatierynczuk-Rudczyk E, Zieliński P, Suchowolec T. 2003. Long-term variations of phytoplankton primary production in a shallow, polyhumic reservoir. Hydrobiologia 506–509: 305–310. [CrossRef] [Google Scholar]
  • Grabowska M, Górniak A. 2004. Letni fitoplankton wybranych sucharów Wigierskiego Parku Narodowego. [Summer phytoplankton of selected humic lakes in Wigry National Park]. In Fałtynowicz Z, Rant-Tanajewska M, eds. Rocznik Augustowsko-Suwalski, Tom IV. Materiały z sesji: 15 lat Wigierskiego Parku Narodowego. Augustowsko-Suwalskie Towarzystwo Naukowe, Suwałki, pp. 99–104. Polish. [Google Scholar]
  • Grabowska M, Mazur-Marzec H. 2014. Vertical distribution of cyanobacteria biomass and cyanotoxin production in the polymictic Siemianówka Dam Reservoir (eastern Poland). Arch Pol Fish 22: 41–51. [CrossRef] [Google Scholar]
  • Guerrero R, Montesinos E, Pedrós-Alió C, et al. 1985. Photo-trophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931. [CrossRef] [Google Scholar]
  • Gutseit K, Berglund O, Graneli W. 2007. Essential fatty acids and phosphorus in seston from lakes with contrasting terrestrial dissolved organic carbon content. Freshw Biol 52: 28–38. [CrossRef] [Google Scholar]
  • Hart RC, Bychek EA. 2011. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668: 61–108. [CrossRef] [Google Scholar]
  • Hessen DO, Andersen T, Lyche A. 1990. Carbon metabolism in a humic lake: Pool sizes and cycling through zooplankton. Limnol Oceanogr 35: 84–99. [CrossRef] [Google Scholar]
  • Hutorowicz A, Szeląg-Wasielewska E, Grabowska M, Owsianny PM, Pęczuła W, Luścińska M. 2006. Gonyostomum semen (Raphidophyceae) in Poland. Fragm Flor Geobot Polonica 13: 399–407. [Google Scholar]
  • Jackson TA, Hecky RE. 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can J Fish Aquat Sci 37: 2300–2317. [CrossRef] [Google Scholar]
  • Jasser I. 1997. The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. Hydrobiologia 342/343: 87–93. [CrossRef] [Google Scholar]
  • Jekatierynczuk-Rudczyk E, Zieliński P, Grabowska M, Ejsmont-Karabin J, Karpowicz M, Więcko A. 2014. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland). Environ Monit Assess 186: 5101–5121. [CrossRef] [PubMed] [Google Scholar]
  • Johansson KSL, Vrede T, Lebret K, Johnson RK. 2013. Zooplankton Feeding on the Nuisance Flagellate Gonyostomum semen, PLoS ONE 8: e62557. [CrossRef] [PubMed] [Google Scholar]
  • Jürgens K, Gasol JM, Massana R, Pedrós-Alió C. 1994. Control of heterotrophic bacteria and protozoans by Daphnia pulex in the epilimnion of Lake Cisó. Arch Hydrobiol 131: 55–78. [Google Scholar]
  • Kankaala P. 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshw Biol 19: 285–296. [CrossRef] [Google Scholar]
  • Karabin A. 1999. Zespoły Crustacea strefy przybrzeżnej humusowych jezior Wigierskiego Parku Narodowego. [Crustacean communities of the coastal zone in humic lakes in Wigry National Park]. In Zdanowski B, Kamiński M, Martyniak A, eds. Funkcjonowanie i ochrona ekosystemów wodnych na obszarach chronionych. Wydawnictwo IRS. Olsztyn, pp. 389–403. Polish. [Google Scholar]
  • Karpowicz M, Górniak A, Więcko A, Cudowski A. 2016. The variability of summer phytoplankton in different types of lakes in North East Poland (Suwałki Landscape Park). Limnol Review 16: 229–236. [CrossRef] [Google Scholar]
  • Klavins M, Rodinov V. Druvieties I. 2003. Aquatic chemistry and humic substances in bog lakes in Latvia. Boreal Environ Res 8: 113–123. [Google Scholar]
  • Kring SA, Figary SE, Boyer GL, Watson SB, Twiss MR. 2014. Rapid in situ measures of phytoplankton communities using the bbe FluoroProbe: evaluation of spectral calibration, instrument intercompatibility, and performance range. Can J Fish Aquat Sci 71: 1087–1095. [CrossRef] [Google Scholar]
  • Lebret K, Fernandez MF, Hagman CHC, Rengefors K, Hansson L-A. 2012. Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol Oceanogr 57: 727–734. [CrossRef] [Google Scholar]
  • McQueen DJ, Johannes MRS, Post JR, Stewart TJ, Lean DRS. 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr 59: 289–309. [CrossRef] [Google Scholar]
  • Muller-Navarra D, Lampert W. 1996. Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. J Plankton Res 18: 1137–1157. [CrossRef] [Google Scholar]
  • Murtaugh PA. 1985. Vertical distributions of zooplankton and population dynamics of Daphnia in a meromictic lake. Hydrobiologia 123: 47–57. [CrossRef] [Google Scholar]
  • Nix M, Jenkins D. 2000. Life history comparisons of Daphnia obtusa from temporary ponds, cultured with a low-quality food. Aquat Ecol 34: 19–27. [CrossRef] [Google Scholar]
  • Nürnberg GK, Shaw M. 1999. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382: 97–112. [CrossRef] [Google Scholar]
  • Ojala A, Salonen K. 2001. Productivity of Daphnia longispina in a highly humic boreal lake. J Plankton Res 23: 1207–1216. [CrossRef] [Google Scholar]
  • Pęczuła W. 2013. Habitat factors accompanying the mass appearances of nuisance algal species Gonyostomum semen (Ehr.) Diensig in humic lakes of Eastern Poland. Pol J Ecol 61: 535–543. [Google Scholar]
  • Pęczuła W, Suchora M, Żukowska G. 2015. The influence of glucose and peat extract additions on the spring recruitment of Gonyostomum semen from the sediments. Hydrobiologia 744: 177–186. [CrossRef] [Google Scholar]
  • Pęczuła W, Toporowska M, Pawlik-Skowrońska B, Koreiviene J. 2017. An experimental study on the influence of the bloom-forming alga Gonyostomum semen (Raphidophyceae) on cladoceran species Daphnia magna. Knowl Manag Aquat Ecosyst 418: 15. [Google Scholar]
  • Piotrowicz R, Kraska M, Joniak T, Klimaszyk P. 2002. The seasonal variability of phosphorus fractions and phyto- and bacterioplankton in different types of humic lakes (northern Poland). Verh Int Ver Limnol 28: 1695–1698. [Google Scholar]
  • Rask M. 1991. Iso Valkjärvi research − an introduction to a multidisciplinary lake liming study. Finnish Fish Res 12: 25–34. [Google Scholar]
  • Rautio M, Korhola A. 2002. Effects of ultraviolet radiation and dissolved organic carbon on the survival of subarctic zooplankton. Polar Biol 25: 460–468. [Google Scholar]
  • Rautio M, Tartarotti B. 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshw Rev 3: 105–131. [CrossRef] [PubMed] [Google Scholar]
  • Robidoux M, del Giorgio P, Derry A. 2015. Effects of humic stress on the zooplankton from clear and DOC-rich lakes. Freshw Biol 60: 1263–1278. [CrossRef] [Google Scholar]
  • Sarvala J, Kankaala P, Zingel P, Arvola L. 1999. Zooplankton. In Keskitalo J, Eloranta P, eds. Limnology of Humic Waters. Leiden: Backhuys, pp. 173–191. [Google Scholar]
  • Sommer U, Gliwicz ZM, Lampert W, Duncan A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471. [Google Scholar]
  • Taipale SJ, Vuorioc K, Strandberg U. 2016. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environ Int 96: 156–166. [CrossRef] [PubMed] [Google Scholar]
  • ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179. [CrossRef] [Google Scholar]
  • Tranvik LJ. 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production. J Plankton Res 11: 985–1000. [CrossRef] [Google Scholar]
  • Williamson CE, Sanders RW, Moeller RE, Stutzman PL. 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol Oceanogr 41: 224–233. [CrossRef] [Google Scholar]
  • Zieliński P, Ejsmont-Karabin J, Grabowska M, Karpowicz M. 2011. Ecological status of shallow Lake Gorbacz (NE Poland) in its final stage before drying up. Oceanol Hydrobiol Stud 40: 1–12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.