Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 18
Number of page(s) 7
DOI https://doi.org/10.1051/limn/2018009
Published online 27 April 2018
  • Afnor. 2006. EN 15204 − Water quality − Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). Afnor: 1–39. [Google Scholar]
  • Anneville O, Ginot V, Angeli N. 2002. Restoration of Lake Geneva: expected versus observed responses of phytoplankton to decreases in phosphorus. Lakes Reserv Res Manag 7: 67–80. [CrossRef] [Google Scholar]
  • Anneville O, Dur G, Rimet F, Souissi S. 2017. Plasticity in phytoplankton annual periodicity: an adaptation to long-term environmental changes. Hydrobiologia. DOI:10.1007/s10750-017-3412-z. [PubMed] [Google Scholar]
  • Berthon V, Alric B, Rimet F, Perga ME. 2014. Sensitivity and responses of diatoms to climate warming in lakes heavily influenced by humans. Frehwater Biol 59: 1755–1767. doi:10.1111/fwb.12380. [CrossRef] [Google Scholar]
  • Bourrelly P. 1981. Les Algues d'eau douce, Tome II: les algues jaunes et brunes. Paris, France: Edition Boubée & Cie, 517 p. [Google Scholar]
  • Brettum P. 1989. Algen als Indikatoren für die Gewasserqualitat in norwegischen Binnenseen. Norsk Institutt for vannforskning NIVA. Report, 102 p. [Google Scholar]
  • Cantonati M, Lowe RL. 2014. Lake benthic algae: toward an understanding of their ecology. Freshw Sci 33: 475–486. [CrossRef] [Google Scholar]
  • Copeland C. 2016. Clean water act: a summary of the law. Congressional Research Service, report, 10 p. [Google Scholar]
  • Dokulil M, Teubner K, Greisberger S. 2005. Typenspezifische Referenzbedingungen für die integrierende Bewertung des ökologischen Zustandes stehender Gewasser Österreichs gemss der EU-Wasserrahmenrichtlinie. Modul 1: Die Bewertung der Phytoplankton struktur nach dem Brettum-Index. Projektstudie Phase 3, Abschlussbericht. Im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, 50 p. [Google Scholar]
  • Domaizon I, Viboud D, Fontvieille D. 2003. Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy − importance of mixotrophy. FEMS Microbiol Ecol 1591: 1–13. [Google Scholar]
  • Druart JC, Leboulanger C, Rolland A. 2004. Evolution du phytoplancton du Léman. Campagne 2003. CIPEL. Rapport, pp. 69–79. [Google Scholar]
  • European Commission. 2000. Directive 2000/60/EC of the European parliament and of the council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities 327: 1–72. [Google Scholar]
  • European Standardisation Committee. 2014. EN 16695 − Water quality − Guidance on the estimation of microalgal biovolume. CEN Stand: 1–238. [Google Scholar]
  • Feret L, Bouchez A, Rimet F. 2017. Benthic diatom communities in high altitude lakes: a large scale study in the French Alps. Int J Limnol 53: 411–423. [CrossRef] [Google Scholar]
  • Guiry MD, Guiry GM. 2014. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland. http://www.algaebase.org; searched on 24 november 2014. [Google Scholar]
  • Jacquet S, Domaizon I, Anneville O. 2014. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget, and Geneva. Environ Monit Assess 186: 3455–3476. doi: 10.1007/s10661-014-3630-z. [CrossRef] [PubMed] [Google Scholar]
  • Jacquet S, Arthaud F, Barbet D, et al. 2017. Suivi environnemental des eaux du lac du Bourget pour l'année 2016. Rapport INRA-CISALB-CALB, 211 p. [Google Scholar]
  • Jones RI. 2000. Mixotrophy in planktonic protists: an overview. Freshw Biol 45: 219–226. doi:10.1046/j.1365-2427.2000.00672.x. [CrossRef] [Google Scholar]
  • Kattge J, Diaz S, Lavorel S, et al. 2011. TRY − a global database of plant traits. Glob Chang Biol 17: 2905–2935. doi:10.1111/j.1365-2486.2011.02451.x. [CrossRef] [Google Scholar]
  • Kerimoglu O, Jacquet S, Vinçon-Leite B, Lemaire B, Rimet F, Soulignac F, Trevisan D, Anneville O. 2017. Modelling the plankton groups of the deep, peri-alpine Lake Bourget. Ecol Model 359: 415–433. [CrossRef] [Google Scholar]
  • Kruk C, Huszar V, Peeters E, et al. 2010. A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55: 614–627. [CrossRef] [Google Scholar]
  • Lang C. 1975. Etude du phytoplancton des eaux Vaudoises. CIPEL, report, pp. 69–89. [Google Scholar]
  • Makarewicz JC, Bertram P, Lewis TW. 1998. Changes in phytoplankton size-class abundance and species composition coinciding with changes in water chemistry and zooplankton community structure of Lake Michigan, 1983 to 1992. J Gt Lakes Res 24: 637–657. [CrossRef] [Google Scholar]
  • Mann DG, Vanormelingen P. 2013. An inordinate fondness? The number, distributions and origins of diatom species. J Eukaryot Microbiol 60: 1–26. [CrossRef] [PubMed] [Google Scholar]
  • Martinet J, Descloux S, Guédant P, Rimet F. 2014. Phytoplankton functional groups for ecological assessment in young sub-tropical reservoirs: case study of the Nam-Theun 2 Reservoir, Laos, South-East Asia. J Limnol 73: 536–550. [CrossRef] [Google Scholar]
  • Mostajir B, Gosselin M, Gratton Y, et al. 2001. Surface water distribution of pico- and nanophytoplankton in relation to two distinctive water masses in the North Water, Baffin Bay, during fall. Aquat Microb Ecol 23: 205–212. [CrossRef] [Google Scholar]
  • Nygaard G. 1949. Hydrobiological studies on some Danish ponds and lakes. Part II: the quotient hypothesis and some little knwon plankton organisms. Vidensk Danske Selsk Biologica Skripta 7: 1–293. [Google Scholar]
  • Padisak J, Crossetti LO, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [CrossRef] [Google Scholar]
  • Pelletier JP, Druart JC, Revaclier R. 1997. Evolution du phytoplancton du Léman. Campagne 1996. CIPEL, report, pp. 69–77. [Google Scholar]
  • Pinay G, Gascuel C, Ménesguen A, Souchon Y. 2017. Eutrophisation: manifestation, causes, conséquences et prédictibilité. Ifremer: CNRS, INRA, 145 p. [Google Scholar]
  • Revaclier R, Balvay G, Druart JC, Pelletier J. 1988. Evolution du plancton du Léman. Campagne 1987. Rapports sur les études et recherches entreprises dans le bassin lémanique. CIPEL, pp. 55–75. [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Toward a functional classification of the freshwater phytoplancton. J Plankton Res 24: 417–428. [Google Scholar]
  • Rimet F. 2017. The phytoplankton of Lake Geneva. Campagne 2016. CIPEL, pp. 81–92. [Google Scholar]
  • Rimet F, Druart JC. 2009. Phytoplancton du Léman. Campagne 2008. CIPEL, pp. 91–102. [Google Scholar]
  • Rimet F, Druart JC, Anneville O. 2009. Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Ecol Inform 4: 99–110. [CrossRef] [Google Scholar]
  • Rimet F, Bouchez A, Tapolczai K. 2016. Spatial heterogeneity of littoral benthic diatoms in a large lake: monitoring implications. Hydrobiologia 771: 179–193. [CrossRef] [Google Scholar]
  • Rivera S, Vasselon V, Jacquet S, Ariztegui D, Bouchez A, Rimet F. 2017. Metabarcoding of lake benthic diatoms: from structure assemblages to ecological assessment. Hydrobiologia 807: 37–51. doi:10.1007/s10750-017-3381-2. [CrossRef] [Google Scholar]
  • Rolland A, Bertrand F, Maumy M, Jacquet S. 2009. Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Wat Res 43: 3155–3168. [CrossRef] [PubMed] [Google Scholar]
  • Salmaso N, Padisak J. 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112. [CrossRef] [Google Scholar]
  • Stickney HL, Hood RR, Stoecker DK. 2000. The impact of mixotrophy on planktonic marine ecosystems. Ecol Model 125: 203–230. doi:10.1016/S0304-3800(99)00181-7. [CrossRef] [Google Scholar]
  • Tada K, Sakai K, Nakano Y, Takemura A, Montani S. 2003. Size-fractioned phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. J Plankt Res 25: 991–997. [CrossRef] [Google Scholar]
  • Tapolczai K, Bouchez A, Stenger-Kovacs C, Padisak J, Rimet F. 2016. Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776: 1–17. [CrossRef] [Google Scholar]
  • Thackeray SJ, Noges P, Dunbar MJ, et al. 2013. Quantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metrics. Ecol Indic 29: 34–47. [CrossRef] [Google Scholar]
  • Thunmark S. 1945. Zur soziologie des susswasserplanktons. Eine methodish-okologishe studie. Folia Limnol Scand 3: 1–66. [Google Scholar]
  • Tittel J, Wiehle I, Wannicke N, et al. 2009. Utilisation of terrestrial carbon by osmotrophic algae. Aquat Sci 71: 46–54. doi:10.1007/s00027-008-8121-2. [CrossRef] [Google Scholar]
  • Utermöhl H. 1958. Zür Vervollkommung der quantitative Phytoplankton Methodik. Mitt Internat Ver Theor Anqew Limnol 9: 1–38. [Google Scholar]
  • Violle C, Navas ML, Vile D, et al. 2007. Let the concept of trait be functional. Oikos 116: 882–892. [CrossRef] [Google Scholar]
  • Wetzel RG, Likens G., 2000. Limnological analyses. New York, USA: Springer-Verlag, 429 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.