Int. J. Lim.
Volume 59, 2023
Special Issue - Advances in freshwater ecology in Sub-Saharan Africa
Article Number 10
Number of page(s) 11
Published online 17 October 2023
  • Abass G, Adomako D, Anornu G, Ganyaglo S, Stigter T, Fianko J, Rai S, Ako A. 2017. δ18O and δ2H characteristics of rainwater, groundwater and springs in a mountainous region of Ghana: implication with respect to groundwater recharge and circulation. Sust Wat Res Manage 3: 413–429. [Google Scholar]
  • Alqaragholi S, Kanoua W, Göbel P. 2021. Comparative investigation of aquatic invertebrates in springs in münsterland area (Western Germany). Water 13: 359. [CrossRef] [Google Scholar]
  • Amundrud S, Srivastava D. 2015. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology 96: 1957–1965. [CrossRef] [PubMed] [Google Scholar]
  • APHA (American Public Health Agency). 1998. Standard methods for examination of water and waste water. In: APHA-AWWA-WPCF (éds.), Pennsylvania, Washington DC., p. 1150. [Google Scholar]
  • Barquín J, Death R. 2006. Spatial patterns of macroinvertebrate diversity in New Zealand springbrooks and rhithral streams. J North Am Benthol Soc 25: 768–786. [CrossRef] [Google Scholar]
  • Behailu T, Badessa T, Tewodros B. 2018. Analysis of physical and chemical parameters in ground water consumed within Konso area, Southwestern Ethiopia. Afr J Environ Sci Technol 12: 106–114. [Google Scholar]
  • Bottazzi E, Bruno M, Pieri V, Di Sabatino A,Silveri L, Carolli M, Rossetti G. 2011. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene springs. J Limnol 70: 77–92. [CrossRef] [Google Scholar]
  • Buh Wung G. 2009. Geographic information systems-based demarcation of risk zones: the case of Limbe sub-Division-Cameroon. Jamba: J Disaster Risk Stud 2: 1–19. [Google Scholar]
  • Cantonati M, Füreder L, Gerecke R, Jütner I, Cox E. 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshw Sci 31: 463–480. [CrossRef] [Google Scholar]
  • Cantonati M, Poikane S, Pringle C, Stevens L, Turak E, Heino J, Richardson J, Bolpagni R, Borrini A, Cid N, Čtvrtlíková M, Galassi D, Hájek M, Hawes I, Levkov Z, Naselli-Flores L, Saber A, Cicco M, Fiasca B, Hamilton P, Kubečka J, Segadelli S, Znachor P. 2020. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water 12 (1): 260. [CrossRef] [Google Scholar]
  • Chinche SB, Zébazé Togouet SH, Moanono PGT, Pountougnigni OF, Tuekam Kayo RP, Fomena A. 2019. Impact of physicochemical parameters on biodiversity and groundwater quality in Tiko, Cameroon. Int J Fish Aquat Stud 7: 39–46. [Google Scholar]
  • Claret C, Marmonier P. 2019. Relative effects of elevational and habitat constraints on alpine spring biodiversity. Internat J Limnol 55: 20. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cottin D, Foucreau N, Hervant F, Piscart C. 2015. Differential regulation of hsp70 genes in the freshwater key species Gammarus pulex (Crustacea, Amphipoda) exposed to thermal stress: effects of latitude and ontogeny. J Comp Physiol 185 (3): 303–313. [CrossRef] [Google Scholar]
  • Dehedin A, Maazouzi S, Puijalon S, Marmonier P, Piscart C. 2013. Combined effects of the water level reduction and the increase in ammonia concentrations on organic matter processing by key freshwater shredders in alluvial wetlands. Glob Chang Biol 19 (3): 763–774. [CrossRef] [PubMed] [Google Scholar]
  • Di Sabatino A, Gerecke R, Martin P. 2000. The biology and ecology of lotic water mites (Hydrachnidia). Freshw Biol 44(1): 47–62. [Google Scholar]
  • Fattorini S, Lombardo P, Fiasca B, Di Cioccio A, Di Lorenzo T, Galassi D. 2017. Earthquake-related changes in species spatial niche overlaps in spring communities. Sci Rep 7: 443. [CrossRef] [PubMed] [Google Scholar]
  • Fugère V, Jacobsen D, Finestone E, Chapman L. 2018. Ecosystem structure and function of afrotropical streams with contrasting land use. Freshw Biol 63: 1498–1513. [CrossRef] [Google Scholar]
  • Gibert J, Culver DC. 2009. Assessing and conserving groundwater biodiversity: an introduction. Freshw Biol 54: 639–648. [CrossRef] [Google Scholar]
  • Glazier D. 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwat Biol 26 (3): 527–542. [CrossRef] [Google Scholar]
  • Gonfiantini R, Roche M, Olivry J, Fontes J, Zuppi G. 2001. The altitude effect on isotopic composition of tropical rains. Chem Geol 181 (1-4): 147–167. [CrossRef] [Google Scholar]
  • Henriques-Oliveira A,Nessimian J. 2010. Aquatic macroinvertebrate diversity and composition in streams along an altitudinal gradient in Southeastern Brazil. Biota Neotrop 10 (10): 115–128. [CrossRef] [Google Scholar]
  • Ioryue I, Wuana R, Augustine A. 2018. Seasonal variation in water quality parameters of river Mkomon Kwande local government area, Nigeria. IJRRPCS 5 (1): 42–62. [Google Scholar]
  • IPCC, 2014. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri, Meyer LA (eds.)]. IPCC, Geneva, Switzerland p. 151. [Google Scholar]
  • Issartel J, Hervant F, Voituron Y, Renault D, Vernon P. 2005. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp Biochem Physiol A Mol Integr Physiol 141: 1–7. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen D. 2003. Altitudinal changes in diversity of macroinvertebrates from small streams in Ecuadorian Andes. Archeol Hydrobiol 158: 145–167. [CrossRef] [Google Scholar]
  • Kaandorp V, Doornenbal P, Kooi H, Broers H, De Louw P. 2019. Temperature buffering by groundwater in ecologically valuable lowland streams under current and future climate conditions. J Hydrol X 3: 100031. [Google Scholar]
  • Körner C. 2007. The use of ‘altitude’ in ecological research. Tree 22 (11): 569–574. [Google Scholar]
  • Lou M, Bloomfield J. 2012. Stygobitic invertebrates in groundwater — a review from a hydrogeological perspective. Freshw Biol 5: 51–71. [Google Scholar]
  • Legendre P, Anderson M. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69 (1): 1–24. [CrossRef] [Google Scholar]
  • Lekan O. 2001. Water problems in Africa − how can the sciences help? Hydrol Sci J 46: 947–962. [CrossRef] [Google Scholar]
  • Maazouzi C, Coureau C, Piscart C, Saplairoles M, Baran N, Marmonier P. 2016. Individual and joint toxicity of the herbicide S-metolachlor and a metabolite, deethylatrazine on aquatic crustaceans: Difference between ecological groups. Chemosphere 165: 118–125. [CrossRef] [PubMed] [Google Scholar]
  • Manenti R, Barzaghi B. 2021. Diel activity of Niphargus amphipods in spring habitats. Crustaceana 94: 705–721. [Google Scholar]
  • Manenti R, Pezzoli E. 2019. Think of what lies below, not only of what is visible above, or: a comprehensive zoological study of invertebrate communities of spring habitats. Eur Zool 86 (1): 272–279. [CrossRef] [Google Scholar]
  • Marmonier P, Maazouzi C, Baran N, Blanchet S, Ritter A, Saplairoles M, Dole-Olivier MJ, Galassi D, Eme D, Doledec S, Piscart C. 2018. Ecology-based evaluation of groundwater ecosystems under intensive agriculture: A combination of community analysis and sentinel exposure. Sci Tot Environ 613–614: 1353–1366. [CrossRef] [Google Scholar]
  • Martin P, Brunke M. 2012. Faunal typology of lowland springs in Northern Germany. Freshw Sci 31 (2): 542–562. [CrossRef] [Google Scholar]
  • Milner A, Brittain J, Castella E, Petts G. 2001. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshw Biol 46 (12):1847. [Google Scholar]
  • Moisan J. 2010. Guide d'identification des principaux Macroinvertébrés benthiques d'eau douce du Québec, surveillance volontaire des cours peu profonds, Direction du suivi de l'état de l'environnement, Ministère du Développement Durable, de l'Environnement et des parcs, p. 82. [Google Scholar]
  • Nana Nkemegni G, Zébazé Togouet SH, Fomena A, Pountougnigni F, Piscart C. 2015. Aquatic invertebrate fauna of wells in a tropical mountain climate, Western Cameroon. Afr J Aquat Sci 40 (4): 393–401. [Google Scholar]
  • Ngoay-Kossy J, Zébazé Togouet SH, Wango P, Bolevane Ouantinam F, Tchakonté S, Piscart C. 2018. Bioindicateurs des milieux aquatiques lotiques en république centrafricaine: macro-invertébrés benthiques et pression anthropique du cours d'eau NGuitto. Rev Ecol Terre Vie 73 (4): 603–616. [Google Scholar]
  • Ngwa C, Ayonghe S, Ubangoh R. 2001. An evaluation of risk zones around Mt Cameroon based on studies of macrosiesmicity and volcanic eruptions linked to 1st March − April 1999 eruption. J Cameroon Geosci Soc 1: 94–95. [Google Scholar]
  • Nola M, Njiné T, Boutin C. 1998. Variabilité de la qualité des eaux souterraines dans quelques stations de Yaoundé (Cameroun). Mem Biospel 25: 183–191. [Google Scholar]
  • Olivry J-C. 1986. Fleuves et rivières du Cameroun. Paris: ORSTOM, 745 p. [Google Scholar]
  • Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. [CrossRef] [PubMed] [Google Scholar]
  • Pascual R, Gomà J, Pedrocchi C, Cadiach O, García G, Solé J. 2020. First data on the biological richness of Mediterranean springs. Limnetica 39 (1): 121–139. [CrossRef] [MathSciNet] [Google Scholar]
  • Pešić V, Dmitrović D, Savić A, von Fumetti S. 2016. Studies on eucrenal-hypocrenal zonation of springs along the river mainstream: a case study of a karst canyon in Bosnia and Herzegovina. Biologia 71 (7): 809–817. [Google Scholar]
  • Pountougnigni OF, Piscart C, Sob Nangou PB, Zébazé Togouet SH. 2021. Distribution of Stenasellidae in Africa and description of a new species of Metastenasellus from Cameroonian groundwaters. Subterr Biol 40: 175–194. [Google Scholar]
  • Pörtner H, Farrell A. 2008. Ecology. Physiology and climate change. Science 322 (5902): 690–692. [CrossRef] [PubMed] [Google Scholar]
  • Rahbek C. 1995. The elevation gradient of species richness: a uniform pattern? Ecography 18 (2): 200–205. [CrossRef] [Google Scholar]
  • Rodier J, Legube B, Merletet N, Brunet R, Mialocq J, Leroy P, Houssin M. 2009. L'analyse de l'eau (Eds). Dunod, Paris, 9e édition. 1579 p. [Google Scholar]
  • Schenk ER, Jenness JS, Stevens LE. 2018. Springs distribution, flow, and associated species in the Verde River Basin, Arizona. Springs Stewardship Institute Technical Report to one for the Verde. Museum of Northern Arizona, Flagstaff, AZ. 47 p. [Google Scholar]
  • Scholze M, Knorr W, Arnell N, Prentice I. 2006. A climate-change risk analysis for world ecosystems. PNAS 103 (35): 13116–13120. [CrossRef] [PubMed] [Google Scholar]
  • Schuol J, Abbaspour K, Srinivasan R, Yang H. 2008. Estimation of freshwater availability in the West African sub‐continent using the SWAT hydrologic model. J Hydrol 352 (1-2): 30–49. [CrossRef] [Google Scholar]
  • Somero G. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213: 912–920. [CrossRef] [PubMed] [Google Scholar]
  • Stoch F, Barbara F, Di Lorenzo T, Porfirio S, Petitta M, Galassi D. 2016. Exploring copepod distribution patterns at three nested spatial scales in a spring system: Habitat partitioning and potential for hydrological bioindication. J Limnol 75 (1): 1–13. [Google Scholar]
  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P. 2010. Invertébrés d'eau douce : Systématique, Biologie et Ecologie. CNRS édition, Paris, France. 588 p. [Google Scholar]
  • Van der Putten WH, Macel M, Visser ME. 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical transactions of the Royal Society of London. Biol Sci 365 (1549): 2025–2034. [Google Scholar]
  • Von Fumetti S, Bieri Wigger F, Nagel P. 2017. Temperature variability and its influence on macroinvertebrate assemblages of alpine springs. Ecohydrology 10 (7):e1878. [CrossRef] [Google Scholar]
  • WHO (World Health Organization). 2017. Guideline for drinking water quality 5th edn. Geneva: World Health Organization, 631 p. [Google Scholar]
  • Zébazé Togouet SH, Tuekam Kayo RP, Boutin C, Nola M, Foto Menbohan S. 2011. Impact de la pression anthropique sur l'eau et la faune aquatique des puits et sources de la région de Yaoundé (Cameroun, Afrique Centrale). Bull Soc Hist Nat Toulouse 147: 27–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.