Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
Article Number 15
Number of page(s) 11
DOI https://doi.org/10.1051/limn/2021011
Published online 27 July 2021
  • American Sportfishing Association (ASA). 2008. Sportfishing in America: An Economic Engine and Conservation Powerhouse. Produced for the American Sportfishing Association, with funding from the Multistate Conservation Grant Program by Southwick Associates. [Google Scholar]
  • Arpajón Y, Larrea Murrel J, Rojas Hernández N, Heydrich Pérez M, Lugo Moya D. 2012. Efectividad de los programas de preservación de ecosistemas dulceacuícolas de Sierra del Rosario, Pinar del Río. Cuba Salud 2012. ISBN 978-959-212-811-8 p. 9. [Google Scholar]
  • Bachmann RW, Jones BL, Fox DD, Hoyer M, Bul LA, Canfield DE. 1996. Relations between trophic state indicators and fish in Florida (USA) lakes. Can J Fish Aquat Sci 53: 842–855. [CrossRef] [Google Scholar]
  • Bain MB, Jia H. 2012. A habitat model for fish communities in large streams and small rivers. Int J Ecol 12: 1–8. [CrossRef] [Google Scholar]
  • Batista Tamayo LM, González de Zayas R, Zúñiga Ríos A, Matos Pupo F, Hernández Roque L, González Alfonso D. 2006. Atributos físicos del norte de la provincia Ciego de Ávila. In: Pina et al. (editores), Ecosistemas costeros: biodiversidad y gestión de recursos naturales. Compilación por el XV Aniversario del CIEC. Sección I. Ecosistema del norte de la provincia Ciego de Ávila. CIEC. Editorial CUJAE. ISBN: 959-261-254-4. [Google Scholar]
  • Betancourt C, Suárez R, Toledo L. 2009. Ciclo anual del nitrógeno y el fósforo en el embalse Paso Bonito, Cienfuegos, Cuba. Limnetica 28: 79–90. [Google Scholar]
  • Betancourt C, Suárez R, Toledo L. 2010. Variabilidad iónica y características tróficas del embalse de Abreus, Cuba. Limnetica 29: 341–352. [Google Scholar]
  • Betancourt C, Suárez R, Jorge F. 2012. Influencia de los procesos naturales y antrópicos sobre la calidad del agua en cuatro embalses cubanos. Limnetica 31: 193–204. [Google Scholar]
  • Boucek R, Barrientos C, Bush MR, Gandy DA, Wilson KL, Young JM. 2017. Trophic state indicators are a better predictor of Florida bass condition compared to temperature in Florida's freshwater bodies. Environ Biol Fishes 100: 1181–1192. [CrossRef] [Google Scholar]
  • Brown TG, Runciman B, Pollard S, Grant ADA. 2009. Biological synopsis of largemouth bass (Micropterus salmoides). Can Manuscr Rep Fish Aquat Sci 2884: v + p. 27. [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 363–369. [CrossRef] [Google Scholar]
  • Chew RL. 1974. Early life history of the Florida Largemouth Bass (volume 7). Tallahassee: Florida Game and Freshwater Fish Commission. [Google Scholar]
  • Clugston JP. 1964. Growth of the Florida largemouth bass Micropterus salmoides floridanus (Lesueur), and northern largemouth bass, M. salmonides (Lacepede), in subtropical Florida. Trans Am Fish Soc 93: 146–154. [CrossRef] [Google Scholar]
  • Coto M, Acuña W. 2007. Freshwater fish seed resources in Cuba, pp. 219–231. In: M.G. Bondad-Reantaso (ed.), Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. p. 628. [Google Scholar]
  • Department of Fisheries and Oceans (DFO). 2006. 2005 Recreational Fisheries Survey Summary. Ottawa: Fisheries and Oceans Canada, pp. 6. [Google Scholar]
  • Domínguez-Hurtado IM, Soto-Valero C, Machado-Montes de Oca A, Salmón-Cuspinera Y. 2019. Influencia de factores meteorológicos en la acuicultura de aguas interiores. Rev Cubana Meteorol 25: 151–166. [Google Scholar]
  • French CG. 2016. Behavior and habitat selection of largemouth bass in response to dynamic environmental variables with a focus on dissolved oxygen. Master of Science in Natural Resources and Environmental Sciences. University of Illinois. pp. 100. [Google Scholar]
  • González-De Zayas R, Merino-Ibarra M, Soto-Jiménez MF, Castillo Sandoval FS. 2013. Biogeochemical responses to nutrient inputs in a Cuban coastal lagoon: runoff, anthropogenic, and groundwater sources. Environ Monit Assess 185: 10101–10114. [CrossRef] [PubMed] [Google Scholar]
  • González-De Zayas R, Lestayo González JA, López Rojas M. 2014. Rescate de la actividad de pesca de la trucha en laguna La Redonda. Informe final. pp. 68 [Google Scholar]
  • Grasshof K, Ehrhardt M, Kremling K. 1983. Methods of seawater analysis. Verlag CEIME. II Edición. [Google Scholar]
  • Guerra FP, Pérez AM, Prokes M. 1980. Spawning, early development and growth of largemouth bass in Cuba. Acta Sci Natural Acad Scientiarum Bohemoslovacae-Brno 14: 3–24. [Google Scholar]
  • Hijuelos AC, Moss L, Sable SE, O'Connell AM, Geaghan JP. 2016. 2017 Coastal Master Plan: C3-18–Largemouth Bass, Micropterus salmoides, Habitat Suitability Index Model. Version II. 1–25. Baton Rouge, Louisiana: Coastal Protection and Restoration Authority. [Google Scholar]
  • Houser DF. 2007. Fish Habitat Management for Pennsylvania Impoundments. Pennsylvania Fish and Boat Commission. p. 39. [Google Scholar]
  • Howell Rivero L. 1937. The introduced Largemouth Bass, a Predator upon Native Cuban Fishes. Trans Am Fish Soc 66: 367–368. [CrossRef] [Google Scholar]
  • Iguchi K, Matsuura K, McNyset KM, Peterson AT, Scachetti-Pereira R, Powers KA, Vieglais DA, Wiley EO, Yodo T. 2004. Predicting invasion of North American basses in Japan using native range data and a genetic algorithm. Trans Am Fish Soc 133: 845–854. [CrossRef] [Google Scholar]
  • INDER (Instituto Nacional de Deportes, Educación Física y Recreación). 1969. Calendario de Recreación Deportiva 1969. INDER, La Habana, pp. 5. [Google Scholar]
  • Kelley JW. 1968. Effects of incubation temperatures on survival of largemouth bass eggs. Prog Fish-Cult 30: 159–163. [CrossRef] [Google Scholar]
  • Kirkwood DS. 1994. Sanplus segmented flow analyzer and its applications, Seawater analysis. Skalar. pp. 51. [Google Scholar]
  • Klimah CA. 2015. Swimming Performance of Coastal and Inland Largemouth Bass at Varying Salinities. Master of Science. Graduate Faculty of Auburn University. pp. 50. [Google Scholar]
  • Kramer RG, Smith Jr LL. 1960. First-year growth of the Largemouth Bass, Micropterus salmoides, and some related ecological factors. Trans Am Fish Soc 89: 222–233. [CrossRef] [Google Scholar]
  • Labaut Y, Betancourt C, Comas A, Salvat H, Toledo L. 2014. Microalgas bentónicas de la laguna La Redonda y su relación con las características del ecosistema. Rev Cubana Investigaciones Pesqueras 31: 64–69. [Google Scholar]
  • Laiz O, Quintana I, Blomqvist P, Broberg A, Infante A. 1994. Comparative limnology of four Cuban reservoirs. Int Revue gesamten Hydrobiol Hydrogr 79: 27–45. [CrossRef] [Google Scholar]
  • Lasenby TA, Kerr SJ. 2000. Bass transfers and stocking: An annotated bibliography and literature review. Fish and Wildlife Branch, Ontario Ministry of Natural resources. Peterborough, Ontario. 207p. + appendices. [Google Scholar]
  • Ledesma C, Bonansea M, Rodríguez CM, Sánchez Delgado AR. 2013. Determinación de indicadores de eutrofización en el embalse Río Tercero, Córdoba (Argentina). Rev Ciência Agron 44: 419–425. [CrossRef] [Google Scholar]
  • Love JW. 2011. Habitat suitability index for largemouth bass in tidal rivers of the Chesapeake bay watershed. Trans Am Fish Soc 140: 1049–1059. [CrossRef] [Google Scholar]
  • Lowe MR, DeVries DR, Wright RA, Ludsin SA, Fryer BJ. 2009. Coastal largemouth bass (Micropterus salmoides) movement in response to changing salinity. Can J Fish Aquat Sci 66: 2174–2188. [CrossRef] [Google Scholar]
  • Maceina MJ, Bayne DR. 2001. Changes in the Black Bass Community and Fishery with Oligotrophication in West Point Reservoir, Georgia. North Am J Fish Manag 21: 745–755. [CrossRef] [Google Scholar]
  • Meador MR, Kelso WE. 1989. Behavior and movement of largemouth bass in response to salinity. Trans Am Fish Soc 118: 409–415. [CrossRef] [Google Scholar]
  • Miranda LE, Hubbard WD. 1994. Winter survival of age-0 Largemouth Bass relative to size, predators, and shelter. North Am J Fish Manag 14: 790–796. [CrossRef] [Google Scholar]
  • Miranda LE, Pugh LL. 1997. Relationship between vegetation coverage and abundance, size, and diet of juvenile Largemouth Bass during winter. North Am J Fish Manag 17: 601–610. [CrossRef] [Google Scholar]
  • Moreira-González A, Comas-González A. 2014. Blooms of a Chattonella species (Raphidohyceae) in La Redonda Lagoon, Northeastern Cuba. Harmful Algae News 48: 12–13. [Google Scholar]
  • Morris DP, Lewis WM. 1988. Phytoplanckton nutrient limitation in Colorado lakes. Freshw Biol 20: 315–327. [CrossRef] [Google Scholar]
  • Moyle PB. 2002. Inland Fishes of California. Los Angeles, CA: Univ. Calif. Press, 502pp. [Google Scholar]
  • Organización para la Cooperación y el Desarrollo Económico (OECD). 1982. Eutrophication of Waters. Monitoring, Assessment and Control. Cooperative Programmers on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate, OECD Paris, Final Report. France. [Google Scholar]
  • Oyugi DO, Mavuti KM, Aloo PA, Ojuok JE, Britton JR. 2014. Fish habitat suitability and community structure in the equatorial Lake Naivasha, Kenya. Hydrobiologia 727: 51–63. [CrossRef] [Google Scholar]
  • Paukert CP, Willis DW. 2004. Environmental influences on Largemouth Bass Micropterus salmoides populations in shallow Nebraska lakes. Fish Manag Ecol 11: 345–352. [CrossRef] [Google Scholar]
  • Peer AC, De Vries DR, Wright RA. 2006. First-year growth and recruitment of coastal largemouth bass (Micropterus salmoides): spatial patterns unresolved by critical periods along a salinity gradient. Can J Fish Aquat Sci 63: 1911–1924. [CrossRef] [Google Scholar]
  • Popowski G, Campos A, Sánchez M, Borrero N, Gómez R, Pérez M. 1994. Desalinization effects over planktonic community structure in Laguna de la Leche, Cuba. AVICENNIA. Rev Ecol Oceanol Biodivers Trop 2: 47–61. [Google Scholar]
  • Prokes M, Barus V, Libosvarsky J. 1981. Some results of the research on Cuban freshwater fishes. In: Topical problems of ichthyology: proceedings of the symposium held in Brno, March 22–24, 1981 (p. 101). Institute of Vertebrate Zoology, Czechoslovak Academy of Sciences. [Google Scholar]
  • Ramírez-Zierold JA, Merino-Ibarra M, Monroy-Ríos E, Olson M, Castillo FS, Gallegos ME, Vilaclara G. 2010. Changing water, phosphorus and nitrogen budgets for Valle de Bravo reservoir, water supply for Mexico City Metropolitan Area, Lake Reserv Manag 26: 23–34. [CrossRef] [Google Scholar]
  • Rodríguez-Tito JC, Pérez-Silva RM, Gómez-Luna LM, Álvarez-Hubert I. 2017. Evaluación químico analítica y microbiológica de los embalses Chalons y Parada de Santiago de Cuba. Rev Cubana de Química 2: 418–435. [Google Scholar]
  • Sammons SM, Dorsey LG, Bettoli PW, Fiss FC. 1999. Effects of Reservoir Hydrology on Reproduction by Largemouth Bass and Spotted Bass in Normandy Reservoir, Tennessee. North Am J Fish Manag 19: 78–88. [CrossRef] [Google Scholar]
  • Scott WB, Crossman EJ. 1973. Freshwater Fishes of Canada. Fish Res Board Can Bull 184: 966. [Google Scholar]
  • Seisdedo M, Díaz M, Barcia S, Arencibia G. 2017. Análisis comparativo de la calidad del agua de dos embalses de la cuenca Arimao, Cuba (2014–2015). Rev Cubana Invest Pesq 34: 60–67. [Google Scholar]
  • Stockner JG, Rydin E, Hyenstrand P. 2000. Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25: 7–14. [CrossRef] [Google Scholar]
  • Straškraba M, Desortová B, Fott J. 1979. Zur Methodik der Bestimmung und Bewertung des Oberflächengewässern. Acta Hydrochim Hydrobiol 7: 569–590. [CrossRef] [Google Scholar]
  • Stroud RH. 1967. Water quality criteria to protect aquatic life: a summary. Am Fish Soc Spec Publ 4: 33–37. [Google Scholar]
  • Stuber RJ, Geghart G, Maughan OE. 1982. Habitat suitability index models: Largemouth bass. U.S. Dept Int. Fish Wild. Serv. FWS/OBS-82/10.16. p. 32. [Google Scholar]
  • Tebo LB, McCoy EG. 1964. Effect of seawater concentration on the reproduction and survival of largemouth bass and bluegills. Prog Fish-Cult 26: 99–106. [CrossRef] [Google Scholar]
  • Toledo AP, Talarico M, Chinez SJ, Agudo EG. 1983. A aplicação de modelos simplificados para a avaliação de processo da eutrofização em lagos e reservatórios tropicais. XIX Congresso Interamericano de Engenharia Sanitária e Ambiental. Camboriú, 1983, pp. 57. [Google Scholar]
  • Valderrama JC. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10: 109–122. [Google Scholar]
  • Vidal Olivera VM, González-Abreu Fernández R, Jiménez Peña Y, Valdés González LA, Castro Carrillo M. 2015. Funciones y usos de los recursos hídricos en el Gran Humedal del Norte de Ciego de Ávila. Ingeniería Hidráulica Ambiental XXXVI: 84–93. [Google Scholar]
  • Zachary J, Quist MC, Downing JA, Larscheid JG. 2010. Common carp (Cyprinus carpio), sport fishes, and water quality: Ecological thresholds in agriculturally eutrophic lakes. Lake Reserv Manag 26: 14–22. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.