Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
Article Number 14
Number of page(s) 11
DOI https://doi.org/10.1051/limn/2021012
Published online 22 July 2021
  • Ács É, Szabó K, Tóth B, Kiss KT. 2004. Investigation of benthic algal communities, especially diatoms of some Hungarian Streams in connection with reference conditions of the Water Framework Directives. Acta Bot Hung 46: 255–277. [Google Scholar]
  • Akçaalan R, Albay M, Gurevin C, Çevik F. 2007. The influence of environmental conditions on the morphological variability of phytoplankton in an oligo-mesotrophic Turkish lake. Ann Limnol Int J Lim 43: 21–28. [Google Scholar]
  • Akçaalan R, Köker L, Gürevin C, Albay M. 2014. Planktothrix rubescens: a perennial presence and toxicity in Lake Sapanca. Turk J Bot 38: 782–789. [Google Scholar]
  • Akıner ME, Akıner İ. 2021. Water quality analysis of drinking water resource lake Sapanca and suggestions for the solution of the pollution problem in the context of sustainable environment approach. Sustainability 13: 3917. [Google Scholar]
  • Altundag H, Agar S, Altıntıg E, Ates A, Sivrikaya S. 2019. Use of ion chromatography method on the determination of some anions in the water collected from Sakarya, Turkey. J Chem Metrol 13: 14–20. [Google Scholar]
  • Arman H, Ileri R, Doğan E, Eren B. 2009. Investigation of Lake Sapanca water pollution, Adapazari, Turkey. Int J Environ Stud 66: 547–561. [Google Scholar]
  • Armbrust EV. 2009. The life of diatoms in the world's oceans. Nature 459: 185–192. [Google Scholar]
  • Ateş A, Demirel H, Köklü R, Çetin-Doğruparmak Ş, Altundağ H, Şengörür B. 2020. Seasonal source apportionment of heavy metals and physicochemical parameters: a case study of sapanca Lake Watershed. J Spectrosc https://doi.org/10.1155/2020/7601590. [Google Scholar]
  • Atıcı T, Yıldız K. 2012. Diatoms of Sakarya River. Turk J Bot 20: 119–134. [Google Scholar]
  • Bahls LL. 1973. Diatom community response to primary wastewater effluent. J Water Pollut Control Fed 45: 134–144. [Google Scholar]
  • Bąk M, Witkowski A, Żelazna-Wieczorek J, Wojtal AZ, Szczepocka E et al. 2012. Klucz do oznaczania okrzemek w fitobentosie na potrzeby oceny stanu ekologicznego wód powierzchniowych w Polsce. Biblioteka Monitoringu Środowiska. Główny Inspektorat Ochrony Środowiska, Warszawa (in Polish). [Google Scholar]
  • Baykal BB, Gönenç IE, Meric M, Tanik A, Tunay O. 1996. An alternative approach for evaluation of lake water quality: Lake Sapanca-a case study from Turkey. Water Sci Technol 34: 73–81. [Google Scholar]
  • Beltrami ME, Cappelletti C, Ciutti F. 2008. Didymosphenia geminata (Lyngbye) M Schmidt (Bacillariophyta) in the Danube basin: new data from the Drava river (northern Italy). Plant Biosyst 142: 126–129. [Google Scholar]
  • Bothwell ML, Taylor BW, Kilroy C. 2014. The Didymo story: the role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Res 29: 229–236. [Google Scholar]
  • Blanco S, Ector L. 2009. Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M Schmidt: a literature review. Nova Hedwigia 88: 347–422. [Google Scholar]
  • Cemagref C. 1982. Étude des méthodes biologiques quantitatives d'appréciation de la qualité des eaux. Rapport Division Qualité des Eaux Lyon − Agence de l'Eau Rhône − Méditerranée. Pierre − Bénite, Corse ( in French). [Google Scholar]
  • Chakandinakira AT, Mwedzi T, Tarakini T. 2019. Ecological responses of periphyton dry mass and epilithic diatom community structure for different atrazine and temperature scenarios. Water Sa 45: 580–591. [Google Scholar]
  • Cullis JDS, Gillis CA, Bothwell ML, Kilroy C, Packman A, Hassan M. 2012. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams. J Geophys Res 117. [Google Scholar]
  • Çelekli A, Toudjani AA, Kayhan S, Lekesiz HO, Gümüş EY. 2017. Ülkemize Özgü Su Kalitesi Ekolojik Değerlendirme Sisteminin Kurulmasi Projesi (project no: 20011K050400). TC Orman ve Su İşleri Bakanlığı Su Yönetimi Genel Müdürlüğü (in Turkish). [Google Scholar]
  • Çelekli A, Toudjani AA, Lekesiz HÖ, Çetin T. 2018. Ecological quality assessment of running waters in the North Aegean catchment with diatom metrics and multivariate approach. Limnologica 73: 20–27. [Google Scholar]
  • Çelekli A, Arslanargun H. 2019. Bio-assessment of surface waters in the south-east of Gaziantep (Turkey) using diatom metrics. Ann Limnol − Int J Lim 55: 1–11. [Google Scholar]
  • Çelekli A, Kapı E. 2019. Ecoregion approach in the assessment of aquatic ecosystems in the west of Gaziantep (Turkey): application of diatom metrics. Ecol Indic 103: 373–382. [Google Scholar]
  • Çelekli A, Toudjani AA, Gümüş EY, Kayhan S, Lekesiz HÖ, Çetin T, 2019a. Determination of trophic weight and indicator values of diatoms in Turkish running waters for water quality assessment. Turk J Bot 43: 90–101. [Google Scholar]
  • Çelekli A, Kayhan S, Lekesiz Ö, Toudjani AA, Çetin T. 2019b. Limno-ecological assessment of Aras River surface waters in Turkey: application of diatom indices. Environ Sci Pollut 26: 8028–8038. [Google Scholar]
  • De Almeida SFP, Gil MCP. 2001. Ecology of freshwater diatoms from the central region of Portugal. Cryptogamie Algol 22: 109–206. [Google Scholar]
  • Dedić A, Stanić-Koštroman S, Đolo S, Lasić A, Škobić D. 2019. Preliminary study of trophic relation between diatoms and endemic species Drusus ramae Marinković-Gospodnetić (1970) (Insecta: Trichoptera) at the Lištica spring, Bosnia and Herzegovina. 8th International Symposium of Ecologists of Montenegro; Budva, Montenegro. [Google Scholar]
  • Delgado C, Pardo I, García L. 2012. Diatom communities as indicators of ecological status in Mediterranean temporary streams (Balearic Islands, Spain). Ecol Indic 15: 131–139. [Google Scholar]
  • Dell'uomo A, Pensieri A, Corradetti D. 1999. Diatomées épilithiques du fleuve Esino (Italie centrale) et leur utilisation pour l'évaluation de la qualité biologique de l'eau. Cryptogamie Algol 20: 253–269 (in French with an abstract in English). [Google Scholar]
  • EC Parliament and Coincil. 2000. Directive of the European Parliament and of the Council 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy. Luxembourg: European Commission. PE-CONS 3639/1/100 Rev 1. [Google Scholar]
  • European Committee for Standardization. 2004. Water quality − Guidance standard for the surveying, sampling and laboratory analyses of phytobenthos in shallow running water. European Standard EN, 15708, Brussels. [Google Scholar]
  • Guiry MD, Guiry GM. 2021. onward (continuously updated). AlgaeBase. World-wide electronic publication. Galway: National University of Ireland [online]. Website http://www.algaebase.org [accessed 20 January 2021]. [Google Scholar]
  • İleri R. 1997. Kınalı-Sakarya (TEM) Otoyolunun Yağışlı Havalarda Sapanca Gölüne Etkilerinin Araştırılması, Su Kaynaklarının Korunması ve İşletilmesi Sempozyumu, İSKİ, İstanbul. 243–252 (in Turkish). [Google Scholar]
  • Kahveci E. 2015. Sapanca Gölü su bütçesi. Uzmanlık tezi, TC Orman ve Su İşleri Bakanlığı, Türkiye (in Turkish). [Google Scholar]
  • Kelly MG, Whitton BA. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7: 433–444. [Google Scholar]
  • Kilroy C, Bothwell M. 2011. Environmental control of stalk length in the bloom-forming, freshwater benthic diatom Didymosphenia geminata (Bacillariophyceae). J Phycol 47: 981–989. [Google Scholar]
  • Kirkwood AE, Jackson LJ, McCauley E. 2009. Are dams hotspots for Didymosphenia geminata blooms? Freshw Biol 54: 1856–1863. [Google Scholar]
  • Kolayli S, Sahin BS. 2007. A taxonomic study on the phytoplankton in the littoral zone of Karagöl Lake (Borçka-Artvin/Turkey). Turk J Fish Aquat Sci 7: 171–175. [Google Scholar]
  • Krammer K. 2003. Diatoms of Europe. Volume 4: Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. ARG Gantner Verlag, Ruggell. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1986. Süßwasserflora von Mitteleuropa: Bacillariophyceae, I Naviculaceae. Gustav Fischer Verlag, Stuttgart. [Google Scholar]
  • Krammer K, Lange-Bertalot H, 1991a. Süßwasserflora von Mitteleuropa: Bacillariophyceae. III Centrales, Fragilariaceae, Eunoticeae. Gustav Fischer Verlag, Stuttgart. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1991b. Süßwasserflora von Mitteleuropa: Bacillariophyceae. IV Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis. Gustav Fischer Verlag, Stuttgart. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1999. Süßwasserflora von Mitteleuropa: Bacillariophyceae. II Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart. [Google Scholar]
  • Ladrera R, Gomà J, Prat N. 2016. Regional distribution and temporal changes in density and biomass of Didymosphenia geminata in two Mediterranean river basins. Aquat Invasions 11: 355–367. [Google Scholar]
  • Lecointe C, Coste M, Prygiel J. 1993. Omnidia: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269: 509–513. [Google Scholar]
  • Leira M, Sabater S. 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Res 39: 73–82. [Google Scholar]
  • Lindstrøm EA, Skulberg O. 2008. Didymosphenia geminata − a native diatom species of Norwegian rivers coexisting with the Atlantic salmon. In: Bothwell ML and Spaulding SA (eds), Proceedings of the 2007 International Workshop on Didymosphenia geminata. Nanaimo, BC, Canada. Canadian Technical Report on Fisheries and Aquatic Sciences 35–40. [Google Scholar]
  • Morkoç E, Tugrul S, Öztürk M, Tufekçi H, Egesel L, Tüfekçi V et al. 1998. Trophic characteristics of the Sapanca lake (Turkey). Croat Chem Acta 71: 303–322. [Google Scholar]
  • Pabuçcu K, Solak CN, Barlas M, Feher G. 2007. Use of epilithic diatoms to evaluate water quality of Akçay Stream (Büyuk-Menderes River) in Mugla/Turkey. Hydrobiologia 17: 327–338. [Google Scholar]
  • Palmer CM. 1980. Algae and Water Pollution. New York: Castle House Pub. Ltd. [Google Scholar]
  • Plenković-Moraj A, Kralj K, Gligora M. 2008. Effect of current velocity on diatom colonization on glass slides in unpolluted headwater creek. Periodicum Biologorum 110: 291–295. [Google Scholar]
  • Sevindik TO, Kücük F. 2016. Benthic diatoms as ındicators of water quality in the acarlar floodplain forest (Northern Turkey). Fresenius Environ Bull 25: 4013–4025. [Google Scholar]
  • Sládeček V. 1986. Diatoms as indicators of organic pollution. Acta Hydrochim Hydrobiol 14: 555–566. [Google Scholar]
  • Sabater S. 1990. Composition and dynamics of a highly diverse diatom assemblage in a limestone stream. Hydrobiologia 190: 43–53. [Google Scholar]
  • Solak CN. 2011. The application of diatom indices in the Upper Porsuk Creek Kütahya-Turkey. Turk J Fish Aquat Sci 11: 31–36. [Google Scholar]
  • Solak CN, Àcs É. 2011. Water quality monitoring in European and Turkish rivers using diatoms. Turk J Fish Aquat Sci 11: 329–337. [Google Scholar]
  • Solak CN, Àcs É, Dayioğlu H. 2009. The application of diatom indices in the Felent Creek (Porsuk-Kütahya). Diatomededlingen 33: 107–109. [Google Scholar]
  • Solak CN, Peszek Ł, Yılmaz E, Ergül HA, Kayal M et al. 2020. Use of Diatoms in Monitoring the Sakarya River Basin, Turkey. Water 12: 703–723. [Google Scholar]
  • Stenger-Kovács C, Padisák J, Bíró P. 2006. Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationships to chemical and hydrological features of the Torna-stream, Hungary. 6th International Symposium on use of algae for monitoring rivers. 12–16 Sept. 2006, Hungary. [Google Scholar]
  • Stevenson RJ, Pan Y, Van Dam H. 1999. Assessing environmental conditions in rivers and streams with diatoms. Diatoms 1: 57–85. [Google Scholar]
  • Stoermer EF, Smol JP. 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge: Cambridge University Press, 469 p. [Google Scholar]
  • Strickland JDH, Parsons TR. 1972. A Practical Handbook of Seawater Analysis. 2nd ed. Ottawa: Fisheries Research Board of Canada. [Google Scholar]
  • Technicon Industrial Methods, 1977a. Nitrate and Nitrite in Water and Wastewater. No. 158-71. Technicon, Luton, UK [Google Scholar]
  • Technicon Industrial Methods. 1977b. Phosphate and Silicate Analysis in Water and Seawater. No. 253-280 E Application Note. Technicon, Luton, UK [Google Scholar]
  • Temel M. 1996. Sapanca Gölü fitoplankton grupları arasında allelopatik ilişkiler üzerinde bir ön araștırma. SDÜ Su Ürün Derg 5: 164–172 (in Turkish). [Google Scholar]
  • Tepe Y, Boyd CE. 2002. Sediment quality in Arkansas bait minnow ponds. Jour World Aquac Soc 33: 221–232. [Google Scholar]
  • Ter Braak CJF, Smilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power. [Google Scholar]
  • Tokatlı C, Solak CN, Yılmaz E, Atıcı T, Dayıoğlu H. 2019. Research into the epipelic diatoms of the Meriç and Tunca rivers and the application of the biological diatom ındex in water quality assessment. Aqua Sci Eng 35: 19–26. [Google Scholar]
  • Toporowska M, Pawlik-Skowrońska B, Wojtal A. 2008. Epiphytic algae on Stratiotes aloides L, Potamogeton lucens L, Ceratophyllum demersum L and Chara spp. in a macrophyte-dominated lake. Ocean Hydrobiol Stud 37: 51–63. [Google Scholar]
  • Toudjani AA, Çelekli A, Gümüş EY, Kayhan S, Lekesiz HÖ, Çetin T. 2017. A new diatom index to assess ecological quality of running waters: a case study of water bodies in western Anatolia. Ann Limnol-Int J Lim 53: 333–343. [Google Scholar]
  • TUBİTAK. 2010. Sapanca Gölü'nün öncelikli kirlilik kaynaklarına özgü kontrol tekniklerinin araştırılıp geliştirilerek göl havzası için uyarlanması projesi. Sonuç raporu (in Turkish). [Google Scholar]
  • Van Dam. H, Mertens A, Sinkeldam J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Neth J Aquat Ecol 28: 117–184. [Google Scholar]
  • Verb RG, Vis ML. 2000. Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. J N Am Benthol Soc 19: 274–288. [Google Scholar]
  • Wang X, Zheng B, Liu L, Li L. 2014. Use of diatoms in river health assessment. Ann Res Rev Biol 4: 4054–4074. [Google Scholar]
  • WFD-UKTAG. 2014. Phytobenthos − Diatoms for assessing river and lake ecological quality (River DARLEQ2). Water Framework Directive − United Kingdom Technical Advisory Group (WFD-UKTAG), Scotland. [Google Scholar]
  • Whitton BA, Ellwood NTW, Kawecka B. 2009. Biology of the freshwater diatom Didymosphenia: a review. Hydrobiologia 630: 1–37. [Google Scholar]
  • Wojtal AZ. 2014. Diatoms (Bacillariophyta) from the Jaksice II archaeological site (southern Poland). In: Wilczyǹski J (eds), A Gravettian Site in Southern Poland: Jaksice II–Contents, 115–126. [Google Scholar]
  • Yılmaz N, Aykulu G. 2010. An investigation on the seasonal variation of the phytoplankton density on the surface water of Sapanca Lake, Turkey. Pak J Bot 42: 1213–1224. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.