Free Access
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 13
Number of page(s) 12
Published online 04 June 2020
  • Austin MP. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Modell 157: 101–118. [Google Scholar]
  • Barbosa FG, Schneck F. 2015. Characteristics of the top-cited papers in species distribution predictive models. Ecol Modell 313: 77–83. [Google Scholar]
  • Breiman L. 2001. Random forests. Mach Learn 45: 5–32. [Google Scholar]
  • Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10: 235–251. [CrossRef] [Google Scholar]
  • Conti L, Comte L, Hugueny B, Grenouillet G. 2015. Drivers of freshwater fish colonisations and extirpations under climate change. Ecography (Cop.) 38: 510–519. [Google Scholar]
  • Cutler DR, Edwards TC, Beard KH, et al. 2007. Random forests for classification in ecology. Ecology 88: 2783–2792. [CrossRef] [PubMed] [Google Scholar]
  • Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann Stat 7: 1–26. [Google Scholar]
  • Efron B, Tibshirani R. 1994. An Introduction to the Bootstrap. London: CRC Press. [CrossRef] [Google Scholar]
  • Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. J Anim Ecol 77: 802–813. [CrossRef] [PubMed] [Google Scholar]
  • Fielding AH, Bell JF. 1992. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24: 38–49. [Google Scholar]
  • Friedman J, Hastie T, Tibshirani R. 2000. Special invited paper additive logistic regression. Ann Stat 28: 337–407. [Google Scholar]
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat 29: 1189–1232. [Google Scholar]
  • Fukuda S. 2011. Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes). Ecol Inform 6: 286–295. [Google Scholar]
  • Fukuda S, Baets B De. 2016. Ecological informatics data prevalence matters when assessing species' responses using data-driven species distribution models. Ecol Inform 32: 69–78. [Google Scholar]
  • Greenwell BM. 2017. pdp: An R package for constructing partial dependence plots. R J 9: 421–436. [Google Scholar]
  • Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecol Lett 8: 993–1009. [Google Scholar]
  • Guisan A, Tingley R, Baumgartner JB, et al. 2013a. Predicting species distributions for conservation decisions. Ecol Lett 16: 1424–1435. [Google Scholar]
  • Guisan A, Tingley R, Baumgartner JB, et al. 2013b. Predicting species distributions for conservation decisions. Ecol Lett 16: 1424–1435. [Google Scholar]
  • Hanberry BB, He HS, Dey DC. 2012. Sample sizes and model comparison metrics for species distribution models. Ecol Modell 227: 29–33. [Google Scholar]
  • Hapfelmeier A, Ulm K. 2013. A new variable selection approach using Random Forests. Comput Stat Data Anal 60: 50–69. [Google Scholar]
  • Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning. New York: Springer. [CrossRef] [MathSciNet] [Google Scholar]
  • Hastie TJ. 2017. Generalized Additive Models, in: Statistical Models in S. New York: Routledge, pp. 249–307 [Google Scholar]
  • Hermoso V, Kennard MJ, Linke S. 2015. Assessing the risks and opportunities of presence-only data for conservation planning. J Biogeogr 42: 218–228. [Google Scholar]
  • Hernandez PA, Graham C, Master LL, Albert DL. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.) 29: 773–785. [Google Scholar]
  • Hopkins RL, Roush JC. 2013. Effects of mountaintop mining on fish distributions in central Appalachia. Ecol Freshw Fish 22: 578–586. [Google Scholar]
  • Kawanabe H, Mizuno N, Nakamura T. 2013. River Ecology. KODANSYA. [Google Scholar]
  • Kim SY. 2009. Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10: 4–7. [PubMed] [Google Scholar]
  • Kuhn M, Wing J, Weston S, et al. 2016. Package “caret” Classification and Regression Training Description Misc functions for training and plotting classification and regression models. [Google Scholar]
  • Liang L, Fei S, Ripy JB, Blandford BL, Grossardt T. 2013. Stream habitat modelling for conserving a threatened headwater fish in the Upper Cumberland River, Kentucky. River Res Appl 29: 1207–1214. [Google Scholar]
  • Liaw A, Wiener M, 2015. Package ‘randomForest’. [Google Scholar]
  • Mi C, Huettmann F, Guo Y, Han X, Wen L. 2017a. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5: e2849. [CrossRef] [PubMed] [Google Scholar]
  • Mi C, Huettmann F, Sun R, Guo Y. 2017b. Combining occurrence and abundance distribution models for the conservation of the Great Bustard. PeerJ 5: e4160. [CrossRef] [PubMed] [Google Scholar]
  • Michaelis J, Diekmann MR. 2017. Biased niches − species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS ONE 12: 1–16. [Google Scholar]
  • MLIT. 2011. River Enviromental Database [WWW Document]. [Google Scholar]
  • MLIT. 2006a. Fundamental servey manual for fish. [Google Scholar]
  • MLIT. 2006b. Fundamental servey manual. [Google Scholar]
  • Moudrý V, Šímová P. 2012. Influence of positional accuracy, sample size and scale on modelling species distributions: a review. Int J Geogr Inf Sci 26: 2083–2095. [Google Scholar]
  • Moyle PB, Light T, 1996. Biological invasions of fresh water: empirial rules and assembly theory. Biol Conserv 78: 149–161. [Google Scholar]
  • Muñoz-mas R, Fukuda S, Vezza P, Martínez-capel F. 2016. Ecological informatics comparing four methods for decision-tree induction: a case study on the invasive Iberian gudgeon (Gobio lozanoi; Doadrio and Madeira, 2004). Ecol Inform 34: 22–34. [Google Scholar]
  • Nakao H, Fujita K, Kawabata T, Nakai K, Sawada H. 2005. Breeding ecology of bluegill, Lepomis macrochirus, an invasive alien species, in the north basin of Lake Biwa, central Japan. Jpn J Ichthyol 53: 55–62. [Google Scholar]
  • Nelder JA, Wedderburn RWM. 1972. Generalized linear models. J R Stat Soc Ser A 135: 370–384. [Google Scholar]
  • Olden JD, Joy MK, Death RG. 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Modell 178: 389–397. [Google Scholar]
  • Onishi F. 2013. GIS Map Book for Japanese River Basin. Osaka Municipal University Press. [Google Scholar]
  • R Development Core Team. 2014. R: A language and environment for statistical computing. Vienna, Austria. [Google Scholar]
  • Rydgren K, Økland RH, Økland T. 2003. Species response curves along environmental gradients. A case study from SE Norwegian swamp forests. J Veg Sci 14: 869–880. [Google Scholar]
  • Ryo M, Yoshimura C, Iwasaki Y. 2018. Importance of antecedent environmental conditions in modeling species distributions. Ecography (Cop.) 41: 825–836. [Google Scholar]
  • Shiroyama R, Yoshimura C. 2016. Assessing bluegill (Lepomis macrochirus) habitat suitability using partial dependence function combined with classification approaches. Ecol Inform 35: 9–18. [Google Scholar]
  • Stockwell DR, Peterson AT. 2002. Effects of sample size on accuracy of species distribution models. Ecol Modell 148: 1–13. [Google Scholar]
  • Stuber R, Gebhart G, Maughan E. 1982. Habitat suitability index models: BLUEGILL. U.S.D.I. Fish Wildl. Serv. FWS/OBS-82. [Google Scholar]
  • Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. [Google Scholar]
  • Taniguchi Y. 2012. Bluegill's effect for ecosystem. Nippon Suisan Gakkaishi 78: 991–996. [CrossRef] [Google Scholar]
  • Vezza P, Muñoz-Mas R, Martinez-Capel F, Mouton A. 2015. Random forests to evaluate biotic interactions in fish distribution models. Environ Model Softw 67: 173–183. [Google Scholar]
  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Elith J, Dudík M, Ferrier S, Huettmann F, Leathwick JR, Lehmann A, Lohmann L, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMC, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SE, Zimmermann NE. 2008. Effects of sample size on the performance of species distribution models. Divers Distrib 14: 763–773. [Google Scholar]
  • Zurell D, Elith J, Schro B. 2012. Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Divers Distrib 18: 628–634. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.