Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 12
Number of page(s) 9
DOI https://doi.org/10.1051/limn/2020006
Published online 28 May 2020
  • Benndorf J. 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration? Aquatic Sci 49: 237–248. [Google Scholar]
  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Applic 8: 559–568. [CrossRef] [Google Scholar]
  • Chen AM. 2008. The cause and mechanism of lake eutrophication. Guangdong Water Resour Hydropower (06): 34–37. [Google Scholar]
  • Dong J, Gao Y, Chang M, et al. 2017. Colony formation by the green alga Chlorella vulgaris in response to the competitor Ceratophyllum demersum . Hydrobiologia 805: 1–11. [Google Scholar]
  • Ekvall MK, Urrutiacordero P, Hansson LA. 2014. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation. PLoS ONE 9: e112956. [CrossRef] [PubMed] [Google Scholar]
  • Elsheekh MM, Haroon AM, Sabae S. 2017. Activity of some Nile River aquatic macrophyte extracts against the cyanobacterium Microcystis aeruginosa . Afr J Aquat Sci 42: 1–8. [CrossRef] [Google Scholar]
  • Jørgensen SE, Bernardi RD. 1998. The use of structural dynamic models to explain successes and failures of biomanipulation. Hydrobiologia 379: 147–158. [Google Scholar]
  • Ji FQ, Wang W. 2013. Comparison of the aquatic plants purification effects on eutrophic water from Chaohu Lake area. Appl Mech Mater 368–370: 282–285. [Google Scholar]
  • Jin P, Xu TT, Yang PY, Gao W, Wang JY, Ma JM. 2016. Effects of phosphorus concentration on interactions among Cyclotella sp. Daphnia magna and Ceratophyllum demersum . China J Aquatic Biol 40: 103–108. [Google Scholar]
  • Liu J, Qin YJ, Qiu YL, Pan WB. 2005. Advances on biomanipulation in control of eutrophic lakes. Ecol Sci 24: 188–192. [Google Scholar]
  • Lv D, Fan M, Kang Y, Blanco K. 2016. Modeling refuge effect of submerged macrophytes in lake system. Bull Math Biol 78: 662–694. [Google Scholar]
  • Ma JF, Deng CS, Zhang GK. et al. 2014. Phosphorus removal of eutrophic water by Algae-Daphnia system. J Agric Sci Technol 16: 148–156. [Google Scholar]
  • Ma JM, Jin P, Guo M, et al. 2014. Influences of phosphorus concentration on interactions among Microcystis aeruginosa, Daphnia magna and Ceratophyllum demersum . China Acta Ecol Sin 34: 1520–1526. [Google Scholar]
  • Ma JM, Jin P, Wang C, et al. 2013. Study on the interactions among Chlorella vulgaris, Daphnia magna and Ceratophyllum demersum in simulated natural water. China Acta Sci Circum 33: 528–534. [Google Scholar]
  • Ma S, Wang CL, Zhang YJ, et al. 2012. Influences of nitrogen and phosphorus concentration on interactions among Chlorella vugaris, Daphnia magna and Ceratophyllum demersum . China Acta Hydrobiolog Sin 36: 66–72. [Google Scholar]
  • Moss B. 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200–201: 367–377. [Google Scholar]
  • Ploeg RRVD, Böhm W, Kirkham MB. 1999. On the origin of the theory of mineral nutrition of plants and the Law of the Minimum. Soil Sci Soc Am J 63: 1055–1062. [Google Scholar]
  • Qin BQ, Yang LY, Chen FZ, Zhu GW, Zhang L, Chen YY. 2006. The mechanism and control technology of lake eutrophication and its application. Chin Sci Bull 51: 1857–1866. [Google Scholar]
  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596. [Google Scholar]
  • Schindler DW, Hecky RE, Findlay DL, et al. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 105: 11254–11258. [CrossRef] [Google Scholar]
  • State Environmental Protection Agency. 2002. Water and Wastewater Monitoring and Analysis (Fourth Edition). Beijing: China Environmental Science Press, pp. 243–257. [Google Scholar]
  • Wang H, Wang H. 2009. Mitigation of lake eutrophication: Loosen nitrogen control and focus on phosphorus abatement. Progr Nat Sci: Mater Int 19: 1445–1451. [CrossRef] [Google Scholar]
  • Wang T, Zhang H, Jian Z, Lei Z, Miao M, Hai H. 2017. Biodiversity effects on resource use efficiency and community turnover of plankton in Lake Nansihu, China. Environ Sci Pollut Res 24: 11279–11288. [CrossRef] [Google Scholar]
  • Welch E. 2009. Should nitrogen be reduced to manage eutrophication if it is growth limiting? Evidence from Moses Lake. Lake Reserv Manag 25: 401–409. [CrossRef] [Google Scholar]
  • Xie P, Sliver C. 1998. Bighead carp and algae water-bloom control. Beijing: Science Press, pp. 103–129. [Google Scholar]
  • Yang PY. 2016. The study on interspecific competition among Cyclotella sp. Chlorella vugaris and Microcystis aeruginosa and the inhibitory effect on their growth by Daphnia magna and Ceratophyllum demerrsum (master's thesis). Henan Normal University (chapter 3). [Google Scholar]
  • Zhang XQ, Xu RX, Xu JY. 1998. The experimental research on eutrophication lake water purifying by Daphnia magna . Water Resour Protect 24: 32–35. [Google Scholar]
  • Zhang ZS, 1998. Macrophyte-Phytoplankton relationship and lake trophic status. J Lake Sci 10: 83–86. [Google Scholar]
  • Zhu J, Liu B, Wang J, Gao Y, Wu Z. 2010. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98: 196–203. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.