Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 35 - 45
DOI https://doi.org/10.1051/limn/2016034
Published online 10 January 2017
  • Anderson C.N., Hsieh C.H., Sandin S.A., Hewitt R., Hollowed A., Beddington, J., May R.M. and Sugihara G., 2008. Why fishing magnifies fluctuations in fish abundance. Nature, 452, 835–839. [CrossRef] [PubMed] [Google Scholar]
  • Angeler D.G., Viedma O. and Moreno J.M., 2009. Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling. Ecology, 90, 3245–3257. [CrossRef] [PubMed] [Google Scholar]
  • Anguis V. and Canavate J.P., 2005. Spawning of captive Senegal sole (Solea senegalensis) under a naturally fluctuating temperature regime. Aquaculture, 243, 133–145. [Google Scholar]
  • Bice C.M. and Zampatti B.P., 2011. Engineered water level management facilitates recruitment of non-native common carp, Cyprinus carpio, in a regulated lowland river. Ecol. Eng., 37, 1901–1904. [Google Scholar]
  • Box G.E., Jenkins G.M. and Reinsel G.C., 2013. Time Series Analysis: Forecasting and Control, John Wiley & Sons, Hoboken, New Jersey. [Google Scholar]
  • Brotons L., Thuiller W., Araújo M.B. and Hirzel A.H., 2004. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27, 437–448. [Google Scholar]
  • Castro-Rebolledo M.I. and Donato-Rondon J.Ch., 2015. Emergence patterns in tropical insects: the role of water discharge frequency in an Andean Stream. Ann. Limnol. - Int. J. Lim., 51, 147–155. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cazelles B. and Stone L., 2003. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol., 72, 953–968. [Google Scholar]
  • Chatfield C., 2000. Time Series Forecasting, Chapman & Hall/CRC, London. [CrossRef] [Google Scholar]
  • Chen, R.G., Lu, Z.F., 2006. Guangxi Freshwater Fishes, Guangxi People's Publishing House, Guangxi, pp. 165–167. [Google Scholar]
  • Copp G.H., 1993. Microhabitat use of fish larvae and 0+ juveniles in a small abandoned channel of the upper River Rhône, France. Folia Zool., 42, 153–164. [Google Scholar]
  • Copp G.H., Kovac V. and Siryova S., 2010. Microhabitat use by stream-dwelling spirlin Alburnoides bipunctatus and accompanying species: implications for conservation. Folia Zool., 59, 240–256. [Google Scholar]
  • Crossin G.T., Hinch S.G., Cooke S.J., Welch D.W., Patterson D.A., Jones S.R.M. et al., 2008. Exposure to high temperature influences the behaviour, physiology, and survival of sockeye salmon during spawning migration. Can. J. Zool., 86, 127–140. [Google Scholar]
  • Dulvy N.K., Sadovy Y. and Reynolds J.D., 2003. Extinction vulnerability in marine populations. Fish Fish., 4, 25–64. [CrossRef] [Google Scholar]
  • Feng Q.X., Wang J.C. and You B.Z., 1986. The investigation report of Guangdong bream spawning grounds. Freshwat. Fish., 6, 1–5 (in Chinese). [Google Scholar]
  • Fincham J.I., Rijnsdorp A.D. and Engelhard G.H., 2013. Shifts in the timing of spawning in sole linked to warming sea temperatures. J. Sea Res., 75, 69–76. [CrossRef] [Google Scholar]
  • Frankham R., 1996. Relationship of genetic variation to population size in wildlife. Conserv. Biol., 10, 1500–1508. [Google Scholar]
  • Frankham R., 2005. Genetics and extinction. Biol. Conserv., 126, 131–140. [Google Scholar]
  • Fromentin J.M. and Powers J.E., 2005. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish., 6, 281–306. [CrossRef] [Google Scholar]
  • Gama M., Crespo D., Dolbeth M. and Anastácioa P., 2016. Predicting global habitat suitability for Corbicula fluminea using species distribution models: the importance of different environmental datasets. Ecol. Model., 319, 163–169. [CrossRef] [Google Scholar]
  • Gehrke P.C. and Harris J.H., 2001. Regional-scale effects of flow regulation on lowland riverine fish communities in New South Wales, Australia. Regul. River, 17, 369–391. [CrossRef] [Google Scholar]
  • Georgakarakos S., Haralabous J., Valavanis V., Arvanitidis C., Koutsoubas D. and Kapantagakis A., 2002. Loliginid and ommastrephid stock prediction in Greek waters using time series analysis techniques. Bull. Mar. Sci., 71, 269–287. [Google Scholar]
  • Georgakarakos S., Koutsoubas D. and Valavanis V., 2006. Time series analysis and forecasting techniques applied on loliginid and ommastrephid landings in Greek waters. Fish. Res., 78, 55–71. [Google Scholar]
  • Gutierrez-Estrada J.C., Silva C., Yanez E., Rodriguez N. and Pulido-Calvo I., 2007. Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: non-linear univariate approach. Fish. Res., 86, 188–200. [Google Scholar]
  • Hirzel A.H., Helfer V. and Metral F., 2001. Assessing habitat-suitability models with a virtual species. Ecol. Model., 145, 111–121. [CrossRef] [Google Scholar]
  • Hu W.W., Wang G.X., Deng W. and Li S.N., 2008. The influence of dams on ecohydrological conditions in the Huaihe River basin, China. Ecol. Eng., 33, 233–241. [Google Scholar]
  • Humphries P. and Lakel P.S., 2000. Fish larvae and the management of regulated rivers. Regul. River., 16, 421–432. [Google Scholar]
  • Humphries P., King A.J. and Koehn J.D., 1999. Fish, flows and floodplains: links between freshwater fish and their environment in the Murray–Darling River system, Australia. Environ. Biol. Fish., 56, 129–151. [CrossRef] [Google Scholar]
  • Hunt T.L., Douglas J.W., Allen M.S., Gwinn D.C., Tonkin Z., Lyon J. and Pickworth A., 2011. Evaluation of population decline and fishing sustainability of the endangered Australian freshwater fish Macquaria australasica. Fisheries Manag. Ecol., 18, 513–520. [CrossRef] [Google Scholar]
  • Jeong K.S., Kim D.K., Jung J.M., Kim M.C. and Joo G.J., 2008. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol. Model., 211, 292–300. [CrossRef] [Google Scholar]
  • Jobling M., 1995. Environmental Biology of Fishes, Chapman and Hall Publishers, London, 455 p. [Google Scholar]
  • Kim J.Y., Jeong H.C., Kim H. and Kang S., 2015. Forecasting the monthly abundance of anchovies in the South Sea of Korea using a univariate approach. Fish. Res., 161, 293–302. [Google Scholar]
  • Kim S., 2016. A multiple process univariate model for the prediction of chlorophyll-a concentration in river systems. Ann. Limnol. - Int. J. Lim., 52, 137–150. [CrossRef] [EDP Sciences] [Google Scholar]
  • Koslow J.A., Goericke R., Lara-Lopez A. and Watson W., 2011. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current. Mar. Ecol. Prog. Ser., 436, 207–218. [Google Scholar]
  • Koutroumanidis T., Iliadis L. and Sylaios G.K., 2006. Time-series modelling of fishery landings using ARIMA models and Fuzzy Expected Intervals software. Environ. Modell. Softw., 21, 1711–1721. [CrossRef] [Google Scholar]
  • Legendre P. and Gallagher E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Legendre P. and Legendre L.F.J., 2012. Numerical Ecology, Elsevier, Amsterdam, pp. 117–121. [Google Scholar]
  • Makarenkov V. and Legendre P., 2002. Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology, 83, 1146–1161. [Google Scholar]
  • Mangel M., Brodziak J. and DiNardo G., 2010. Reproductive ecology and scientific inference of steepness: a fundamental metric of population dynamics and strategic fisheries management. Fish Fish., 11, 89–104. [CrossRef] [Google Scholar]
  • Manjarres-Martinez L.M., Gutierrez-Estrada J.C., Mazenet-Gonzalez J. and Soriguer M.C., 2010. Seasonal patterns of three fish species in a Caribbean coastal gill-net fishery Biologically induced or climate-related aggregations? Fish. Res., 106, 358–367. [Google Scholar]
  • Martin F.D. and Paller M.H., 2008. Ichthyoplankton transport in relation to floodplain width and inundation and tributary creek discharge in the lower Savannah River of Georgia and South Carolina. Hydrobiologia, 598, 139–148. [Google Scholar]
  • Martins E.G., Hinch S.G., Patterson D.A., Hague M.J., Cooke S.J. and Miller K.M. et al., 2012. High river temperature reduces survival of sockeye salmon (Oncorhynchus nerka) approaching spawning grounds and exacerbates female mortality. Can. J. Fish. Aquat. Sci., 69, 330–342. [Google Scholar]
  • Merigoux S. and Ponton D., 1999. Spatio-temporal distribution of young fish in tributaries of natural and flow regulated sections of a neotropical river in French Guiana. Freshwat. Biol., 42, 177–198. [CrossRef] [Google Scholar]
  • Morais P., 2008. Review on the major ecosystem impacts caused by damming and watershed development in an Iberian basin (SW-Europe): focus on the Guadiana estuary. Ann. Limnol. - Int. J. Lim., 44, 105–117. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mougeot F., Redpath S.M. and Hudson P.J., 2003. The effect of aggressiveness on the population dynamics of a territorial bird. Nature, 421, 737–739. [CrossRef] [PubMed] [Google Scholar]
  • Mouthon J. and Daufresne M., 2008. Population dynamics and life cycle of Pisidium amnicum (Muller) (Bivalvia: Sphaeriidae) and Valvata piscinalis (Muller) (Gastropoda: Prosobranchia) in the Saone river, a nine-year study. Ann. Limnol. - Int. J. Lim., 44, 241–251. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mullowney D.R., Dawe E.G., Colbourne E.B. and Rose G.A., 2014. A review of factors contributing to the decline of Newfoundland and Labrador snow crab (Chionoecetes opilio). Rev. Fish. Biol. Fisher., 24, 639–657. [CrossRef] [Google Scholar]
  • Novacek M.J. and Cleland E.E., 2001. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl. Acad. Sci. USA, 98, 5466–5470. [CrossRef] [Google Scholar]
  • Ozgul A., Child D.Z., Oli M.K., Armitage K.B., Blumstein D.T., Olson L.E., Tuljapurkar S. and Coulson T., 2010. Coupled dynamics of body mass and population growth in response to environmental change. Nature, 466, 482–485. [CrossRef] [PubMed] [Google Scholar]
  • Paradis E., Baillie S.R., Sutherland W.J. and Gregory R.D., 2000. Spatial synchrony in populations of birds: effects of habitat, population trend, and spatial scale. Ecology, 81, 2112–2125. [Google Scholar]
  • Pringle C.M., Freeman M.C. and Freeman B.J., 2000. Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical-temperate comparisons the massive scope of large dams and other hydrologic modifications in the temperate New World has resulted in distinct regional trends of biotic impoverishment. While neotropical rivers have fewer dams and limited data upon which to make regional generalizations, they are ecologically vulnerable to increasing hydropower development and biotic patterns are emerging. BioScience, 50, 807–823. [Google Scholar]
  • Probst W.N., Stoll S., Peters L., Fischer P. and Eckmann R., 2009. Lake water level increase during spring affects the breeding success of bream Abramis brama (L.). Hydrobiologia, 632, 211–224. [Google Scholar]
  • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical computing, Vienna, Austria. Available online at: http://www.R-project.org [Google Scholar]
  • Sala O.E., Chapin F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B., Kinzig A., Leemans R., Lodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M.T., Walker B.H., Walker M. and Wall D.H., 2000. Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. [Google Scholar]
  • Sassa C. and Hirota Y., 2013. Seasonal occurrence of mesopelagic fish larvae on the onshore side of the Kuroshio off southern Japan. Deep-Sea Res. Pt. I., 81, 49–61. [CrossRef] [Google Scholar]
  • Scheidegger K.J. and Bain M.B., 1995. Larval fish distribution and microhabitat use in free-flowing and regulated rivers. Copeia, 125–135. [Google Scholar]
  • Shelton A.O. and Mangel M., 2011. Fluctuations of fish populations and the magnifying effects of fishing. Proc. Natl. Acad. Sci. USA, 108, 7075–7080. [CrossRef] [Google Scholar]
  • Stenseth N.C. and Rouyer T., 2008. Ecology: destabilized fish stocks. Nature, 452, 825–826. [CrossRef] [PubMed] [Google Scholar]
  • Tan X.C., Li X.H., Lek S., Li Y., Wang C., Li J. and Luo J.R., 2010. Annual dynamics of the abundance of fish larvae and its relationship with hydrological variation in the Pearl River. Environ. Biol. Fish., 88, 217–225. [Google Scholar]
  • Tsitsika E.V., Maravelias C.D. and Haralabous J., 2007. Modeling and forecasting pelagic fish production using univariate and multivariate ARIMA models. Fish. Sci., 73, 979–988. [Google Scholar]
  • Unfer G., Hauer C. and Lautsch E., 2011. The influence of hydrology on the recruitment of brown trout in an Alpine river, the Ybbs River, Austria. Ecol. Freshwat. Fish., 20, 438–448. [CrossRef] [Google Scholar]
  • Vilizzi L., 2012. Abundance trends in floodplain fish larvae: the role of annual flow characteristics in the absence of overbank flooding. Fundam. Appl. Limnol., 181, 215–227. [CrossRef] [Google Scholar]
  • Vilizzi L. and Copp G.H., 2005. An analysis of 0+barbel (Barbus barbus) response to discharge fluctuations in a flume. River. Res. Appl., 21, 421–438. [CrossRef] [Google Scholar]
  • Yi Y.J., Wang Z.Y. and Yang Z.F., 2010. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River. J. Hydrol., 387, 283–291. [Google Scholar]
  • Yu L., Zhou L., Tan L., Jiang H., Wang Y., Wei S. and Nie S., 2014. Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China. PLoS ONE, 9, e98241. [Google Scholar]
  • Zhang G.P., 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.