Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 47 - 56
Published online 10 January 2017
  • Ahyong S.T. and Yeo D.C.J., 2007. Feral populations of the Australian red-claw crayfish (Cherax quadricarinatus von Martens). Biol. Invas., 9, 943–946. [CrossRef] [Google Scholar]
  • Aquiloni L., Brusconi S., Cecchinelli E., Tricarico E., Giuseppe M., Paglianti A. and Gherardi F., 2010. Biological control of invasive populations of crayfish: the European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol. Invas., 12, 3817–3824. [Google Scholar]
  • Baskar S., Narasimhan N., Swamidass D.G., Ravichelvan R., Sukumaran M. and Anandaraj T., 2012. Food and feeding habits of Penaeus monodon (Fabricius) from Mallipattinam Coast in Thanjavur Dist, Tamil Nadu, India. Int. J. Res. Biol. Sci., 3, 1–4. [Google Scholar]
  • Beaudoin C.P., Prepas E.E., Tonn W.M., Wassenaar L.I. and Kotak B.G., 2002. A stable carbon and nitrogen isotope study of lake food webs in Canada's Boreal Plain. Freshwat. Biol., 46, 465–477. [CrossRef] [Google Scholar]
  • Bergamino L., Dalu T. and Richoux N.B., 2014. Spatial and temporal patterns in sediment organic matter composition within an estuarine environment: stable isotope and fatty acid signatures. Hydrobiologia, 732, 133–145. [CrossRef] [Google Scholar]
  • Blake M.A. and Hart P.J.B., 1993. The behavioural responses of juvenile signal crayfish Pacifastacus leniusculus to stimuli from perch and eels. Freshwat. Biol., 29, 89–97. [CrossRef] [Google Scholar]
  • Carvalho D.R., Castro D., Callisto M., Moreira M.Z. and Pompeu P.S., 2015. Isotopic variation in five species of stream fishes under the influence of different land uses. J. Fish Biol., 87, 559–578. [CrossRef] [PubMed] [Google Scholar]
  • Coche A.G., 1974. Limnological study of a tropical reservoir. In: Balon, E.K. and Coche A.G. (eds.), Lake Kariba: a Man-made Tropical Ecosystem in Central Africa. Dr. W. Junk Publishers, The Hague, pp. 1–246. [Google Scholar]
  • Dalu T., Clegg B., Marufu L. and Nhiwatiwa T., 2012. The feeding habits of an introduced piscivore, Hydrocynus vittatus (Castelnau 1861) in a small tropical African reservoir. Pan-Am. J. Aquat. Sci., 7, 85–92. [Google Scholar]
  • Dalu T., Clegg B.W. and Nhiwatiwa T., 2013. A study of the ichthyofauna of a small tropical reservoir, south-eastern lowveld, Zimbabwe. Afr. J. Aquat. Sci., 38, 105–113. [CrossRef] [Google Scholar]
  • Dalu T., Weyl O.L.F., Froneman P.W. and Wasserman R.J., 2016. Trophic interactions in an Austral temperate ephemeral pond inferred using stable isotope analysis. Hydrobiologia, 768, 81–94. [CrossRef] [Google Scholar]
  • Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z-I., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A-H., Soto D., Stiassny M.L.J. and Sullivan C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev., 81, 163–182. [CrossRef] [PubMed] [Google Scholar]
  • Feminella J.W. and Resh V.H., 1989. Submersed macrophytes and grazing crayfish: an experimental study of herbivory in a California freshwater marsh. Holarc. Ecol., 12, 1–8. [Google Scholar]
  • Fry B., 1999. Using stable isotopes to monitor watershed influences on aquatic trophodynamics. Can. J. Fish. Aquat. Sci., 56, 2167–2171. [CrossRef] [Google Scholar]
  • Fry B. and Davis J., 2015. Rescaling stable isotope data for standardized evaluations of food webs and species niches. Mar. Ecol. Progr. Ser., 528, 7–17. [CrossRef] [Google Scholar]
  • Gosse J.-P., 1986. Mochokidae. In: Daget J., Gosse J.-P. and Thys van den Audenaerde, D.F.E. (eds.) Check-list of the Freshwater Fishes of Africa (CLOFFA), ISNB, Brussels, MRAC, Tervuren and ORSTOM, Paris, pp. 402–414. [Google Scholar]
  • Hansson S., Hobbie J.E., Elmgren R., Larsson U., Fry B. and Johansson S., 1997. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology, 78, 2249–2257. [CrossRef] [Google Scholar]
  • Havel J.E., Kovalenko K.E., Thomaz S.M., Amalfitano S. and Kats L.B., 2015. Aquatic invasive species: challenges for the future. Hydrobiologia, 750, 147–170. [CrossRef] [PubMed] [Google Scholar]
  • Hesslein R.H., Hallard K.A. and Ramlal P., 1993. Replacement of sulphur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci., 50, 2071–2076. [CrossRef] [Google Scholar]
  • Holling C.S., 1978. Adaptive Environmental Assessment and Management, Blackburn Press, Caldwell, USA. [Google Scholar]
  • Hudina S., Žganec K. and Hock K., 2015. Differences in aggressive behaviour along the expanding range of an invasive crayfish: an important component of invasion dynamics. Biol. Invas., 17, 3101–3112. [Google Scholar]
  • Hyslop E.J., 1980. Stomach contents analysis – a review of methods and their application. J. Fish Biol., 17, 411–430. [Google Scholar]
  • Iacarella J.C., Dick J.T.A. and Ricciardi A., 2015. A spatio-temporal contrast of the predatory impact of an invasive freshwater crustacean. Divers. Distrib., 21, 803–812. [CrossRef] [Google Scholar]
  • ISP, 2016. Invasive species compendium, Available online at: [Google Scholar]
  • Jackson A.L., Inger R., Parnell A.C. and Bearshop S., 2011. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol., 80, 595–602. [CrossRef] [PubMed] [Google Scholar]
  • Jussila J., Ruokonen T.J., Syväranta J., Kokko H., Vainikka A., Makkonen J. and Kortet R., 2015. It takes time to see the menu from the body: an experiment on stable isotope composition in freshwater crayfishes. Knowl. Manag. Aquat. Ecosyst., 416, 25. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kadye W.T. and Booth A.J., 2012. Integrating stomach content and stable isotope analyses to elucidate the feeding habits of non-native sharptooth catfish Clarias gariepinus. Biol. Invas., 14, 779–795. [CrossRef] [Google Scholar]
  • Kenmuir D.H.S., 1971. An analysis of data on the tigerfish Hydrocynus vittatus Castelnau obtained from Kariba International Tigerfish Tournaments. Newsl. Limnol. Soc. South. Afr., 17, 33–38. [Google Scholar]
  • Kenmuir D.H.S., 1973. The Ecology of the Tigerfish, Hydrocynus Vittatus Castelnau in Lake Kariba, National Museums of Rhodesia (Zimbabwe), Bulawayo. [Google Scholar]
  • Kreps T.A., Larson E.R. and Lodge D.M., 2015. Do invasive rusty crayfish (Orconectes rusticus) decouple littoral and pelagic energy flows in lake food webs? Freshwat. Sci., 35. [Google Scholar]
  • Layman C.A., Quattrochi J.P., Peyer C.M. and Allgeier J.E., 2007. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett., 10, 937–944. [CrossRef] [PubMed] [Google Scholar]
  • Layman C.A., Araujo M.S., Boucek R., Hammerschlag-Peyer C.M., Harrison E., Jud Z.R., Matich P., Rosenblatt A.E., Vaudo J.J., Yeager L.A., Post D.M. and Bearhop S., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev., 87, 545–562. [Google Scholar]
  • Marufu L.T., Phiri C. and Nhiwatiwa T., 2014. Invasive Australian crayfish Cherax quadricarinatus in the Sanyati basin of Lake Kariba: a preliminary survey. Afr. J. Aquat. Sci., 39, 233–236. [CrossRef] [Google Scholar]
  • Matthes H., 1968. The food and feeding habits of tigerfish, Hydrocynus vittatus (Castelanau 1861), in Lake Kariba. Beaufortia, 15, 143–153. [Google Scholar]
  • McCutchan J.H. Jr., Lewis W.M. Jr., Kendall C. and McGrath C.C., 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378–390. [CrossRef] [Google Scholar]
  • Mhlanga W., 2003. Food and feeding habits of tigerfish, Hydrocynus vittatus, in Lake Kariba, Zimbabwe. In: Palomares M.L.D., Samb B., Diouf T., Vakily J.M. and Paul D., (eds.), Fish Biodiversity. Local Studies as Basis for Global Inferences, Brussels, Belgium. ACP-EU Fisheries Research Report 14. 281p. [Google Scholar]
  • Musseau C., Boulenger C., Crivelli A.J., Lebel I., Pascal M., Boulêtreau S. and Santoul F., 2015. Native European eels as a potential biological control for invasive crayfish. Freshwat. Biol., 60, 636–645. [CrossRef] [Google Scholar]
  • Mustamäki N., Cederberg T. and Mattila J., 2014. Diet, stable isotopes and morphology of Eurasian perch (Perca fluviatilis) in littoral and pelagic habitats in the northern Baltic Proper. Environ. Biol. Fishes, 97, 675–689. [CrossRef] [Google Scholar]
  • Parnell A.C., Inger R., Bearhop S. and Jackson A.L., 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE, 5, e9672. [CrossRef] [PubMed] [Google Scholar]
  • Peterson B.J. and Fry B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 293–320. [Google Scholar]
  • Pinnegar J.K. and Polunin N.V.C., 1999. Differential fractionation of Δ13C and Δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol., 13, 225–231. [Google Scholar]
  • Post D.M., Layman C.A., Arrington D.A., Takimoto G., Quattrochi J. and Montana C.G., 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152, 179–189. [CrossRef] [PubMed] [Google Scholar]
  • Sala O.E., Chapin F.S. III, Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B. and Kinzig A., 2000. Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. [Google Scholar]
  • Sanyanga R.A., 1996. Variations in abundance of Synodontis zambezensis (Pisces. Mochokidae) Peters 1852, in the inshore fishery of Lake Kariba. Fish. Res., 26, 171–186. [CrossRef] [Google Scholar]
  • Souty-Grosset C., Anastácio P.M., Aquiloni L., Banha F., Choquer J., Chucholl C. and Tricarico E., 2016. The red swamp crayfish Procambarus clarkii in Europe: impacts on aquatic ecosystems and human well-being. Limnologica, 58, 78–93. [CrossRef] [Google Scholar]
  • SPSS Inc., 2007. SPSS Release 16.0.0 for Windows, Polar Engineering and Consulting, SPSS Inc., Chicago. [Google Scholar]
  • Strayer D.L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwat. Biol., 55, 152–174. [Google Scholar]
  • Takano M. and Subramaniam S.P., 1988. Some feeding observations on the predatory feeding habits of Hydrocynus vittatus Castelnau in Lake Kariba. In: Lewis D. (ed.) Predator-prey Relationships, Population Dynamics and Fisheries Productivities of Large African Lakes. CIFA Occasional papers 15, Food and Agricultural Organisation of the United Nations, Rome, pp. 130–139. [Google Scholar]
  • Tyser A.B. and Douthwaite R.J., 2014. Predation on invasive redclaw crayfish Cherax quadricarinatus by native fishes in the Kafue River, Zambia. Afr. J. Aquat. Sci., 39, 473–477. [CrossRef] [Google Scholar]
  • Vanderklift M.A. and Ponsard S., 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia, 136, 169–182. [CrossRef] [PubMed] [Google Scholar]
  • Vander Zanden M.J., Cabana G. and Rasmussen J.B., 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci., 54, 1142–1158. [Google Scholar]
  • Vander Zanden M.J., Hulshof M., Ridgway M.S. and Rasmussen J.B., 1998. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. Trans. Am. Fish. Soc., 127, 729–739. [CrossRef] [Google Scholar]
  • von Martens E., 1868. Ueber einige ostasiatische Susswasserthiere. Archiv für Naturgeschichte, 34, 1–64. [CrossRef] [Google Scholar]
  • Wendler F., Biss R. and Chucholl C., 2015. Population ecology of endangered white-clawed crayfish (Austropotamobius pallipes s. str.) in a small Rhithral River in Germany. Knowl. Manag. Aquat. Ecosyst., 416, 24. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zengeya T.A. and Marshall B.E., 2007. Trophic interrelationships amongst cichlid fishes in a tropical African reservoir (Lake Chivero, Zimbabwe). Hydrobiologia, 592, 175–182. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.