Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 27 - 34
Published online 10 January 2017
  • Abdo M.S.A. and Da Silva C.J., 2002. Nutrient stock in the aquatic macrophytes Eichhornia crassipes and Pistia stratiotes in the Pantanal–Brazil. In: Proceedings of the German-Brazilian Workshop on Neotropical Ecosystems, 875–880. [Google Scholar]
  • Aliotta G., Molinaro A., Monaco P., Pinto G. and Previtera L., 1992. Three biologically active phenulpropanoid glucosides from Myriophyllum verticillatum. Phytochemistry, 31, 109–111. [CrossRef] [Google Scholar]
  • Anderson M.R. and Kalff J., 1986. Nutrient limitation of Myriophyllum spicatum growth in situ. Freshwater Biol., 16, 735–743. [CrossRef] [Google Scholar]
  • Bakker E.S., van Donk E., Declerck S.A.J., Helmsing N.R., Hiding B. and Nolet B.A., 2010. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic Appl. Ecol., 11, 432–439. [Google Scholar]
  • Barko J.W., Adams M.S. and Clesceri N.L., 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation—a review. J. Aquat. Plant Manag., 24, 1–10. [Google Scholar]
  • Canfield D., Shireman J., Colle D., Haller W., Watkins C. and Maceina M., 1984. Prediction of chlorophyll-a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci., 41, 497–501. [CrossRef] [Google Scholar]
  • Carlson R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr., 22, 361–369. [Google Scholar]
  • Clarke S.J. and Wharton G., 2001. Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. Sci. Total Environ., 266, 103–112. [CrossRef] [PubMed] [Google Scholar]
  • Dawidek J., Sobolewski W. and Turczyński M., 2004. Transformations of catchment-areas of lakes converted into storage reservoirs in the Wieprz-Krzna Canal system. Limnol. Rev., 4, 67–74. [Google Scholar]
  • Egertson Ch.J., Kopaska J.A. and Downing J.A., 2004. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia, 52, 145–156. [CrossRef] [Google Scholar]
  • Faafeng B.A. and Mjelde M., 1998. Clear and turbid water in shallow Norwegian lakes related to submerged vegetation. In: Jeppesen E., Sondergaard Ma., Sondergaard Mo. and Christofersen K. (eds.), The Structuring Role of Submerged Macrophytes in Lakes, Springer, New York, 361–368. [CrossRef] [Google Scholar]
  • Golterman H.L., 1969. Methods for Chemical Analysis of Freshwaters, IBP Handbook No. 8. Blackwell Scientific Publications, Oxford, Edinburgh. [Google Scholar]
  • Grassmuck N., Haurey J., Leglize L. and Muller S., 1995. Assessment of the bio-indicatory capacity of aquatic macrophytes using multivariate analysis. Hydrobiologia, 300–301, 115–122. [CrossRef] [Google Scholar]
  • Gross E.M., Meyer H. and Schilling G., 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, 41, 133–138. [CrossRef] [Google Scholar]
  • Harasimiuk M., Michalczyk Z. and Turczyński M., 1998. Lakes of Łęczna-Włodawa Lakeland. Environmental Monograph, UMCS Lublin Press, Lublin (in Polish). [Google Scholar]
  • Hermanowicz W., Dojlido J., Dożańska W., Kosiorowski B. and Zerbe J., 1999. Physical and Chemical Investigation Methods of Water and Sewage, Arkady Press, Warsaw (in Polish). [Google Scholar]
  • Hidding B., Nolet B.A., De Boer T., De Vries P.P. and Klaassen M., 2010. Above- and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community. Oecologia, 162, 199–208. [CrossRef] [PubMed] [Google Scholar]
  • Horppila J. and Nurminen L., 2001. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia, 545, 167–175. [Google Scholar]
  • Hutchinson G.E., 1975. A Treatise on Limnology, Vol. III: Limnological Botany, John Wiley & Sons, New York. [Google Scholar]
  • James C.S., Fisher J., Russell V., Collings S. and Moss B., 2005. Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biol., 50, 1049–1063. [CrossRef] [Google Scholar]
  • Jensen S., 1977. An objective method for sampling the macrophyte vegetation in lakes. Vegetatio, 33, 107–118. [CrossRef] [Google Scholar]
  • Jeppesen E., Søndergaard M., Meerhoff M., Lauridsen T.L. and Jensen J.P., 2007. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia, 584, 239–252. [CrossRef] [Google Scholar]
  • Kalff J., 2001. Limnology, Prentice Hall, New York. [Google Scholar]
  • Kolada A., Soszka H., Cydzik D. and Gołub M., 2005. Abiotic typology of Polish lakes. Limnology, 35, 145–150. [CrossRef] [Google Scholar]
  • Kornijów R. and Radwan S., 2002. The principles of sustainable use and conservation of lakes in rural areas. In: Radwan S. (ed.), Problems of Protection and use of Rural Areas of High Natural Values. Maria Curie-Skłodowska Press, Lublin, Poland, 63–70 (in Polish). [Google Scholar]
  • Körner S. and Nicklisch A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol., 38, 862–871. [CrossRef] [Google Scholar]
  • Krebs C.H., 1989. Ecological Methodology, Harper & Row, New York. [Google Scholar]
  • Kristensen P., Sondergaard M. and Jeppesen E., 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia, 228, 101–109. [CrossRef] [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge. [Google Scholar]
  • Mahaney W.M., Wardrop D.H. and Brooks R.P., 2004. Impacts of sedimentation and nitrogen enrichment on wetland plant community development. Plant Ecol., 175, 227–243. [Google Scholar]
  • Moss B., Barker T., Stephen D., Williams A.E., Balayla D., Beklioglu M. and Carvalho L., 2005. Consequences of reduced nutrient loading to a shallow and a deep lake in a lowland catchment – deviations from the norm? Freshwater Biol., 50, 1687–1705. [CrossRef] [Google Scholar]
  • Mulderij G., van Donk E. and Roelofs J.G.M., 2003. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia, 491, 261–271. [CrossRef] [Google Scholar]
  • Mulderij G., van Nes E.H. and van Donk E., 2007. Macrophyte-phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecol. Model., 204, 85–92. [Google Scholar]
  • Murphy K.J., 2002. Plant communities and plant diversity in softwater lakes of Northern Europe. Aquat. Bot., 73, 287–324. [CrossRef] [Google Scholar]
  • Nichols S.A., 1992. Depth, substrate, and turbidity relationships of some Wisconsin lake plants. Trans. Wisconsin Acad. Sci. Arts Lett., 80, 97–118. [Google Scholar]
  • Nichols S.A. and Shaw B.H., 1986. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis. Hydrobiologia, 131, 3–21. [CrossRef] [Google Scholar]
  • Pełechaty M., Ossowska J., Pukacz A. and Apolinarska K., 2015. Site-dependent species composition, structure and environment al conditions of Chara tomentosa L. meadows, western Poland. Aquat. Bot., 120, 92–100. [CrossRef] [Google Scholar]
  • Penning W.E., Mjelde M., Dudley B., Hellsten S., Hanganu J., Kolada A., van den Berg M., Poikane S., Phillips G., Willby N. and Ecke F., 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat. Ecol., 42, 237–251. [CrossRef] [Google Scholar]
  • Rørslett B., 1991. Principal determinants of aquatic macrophyte richness in northern European lakes. Aquat. Bot., 39, 173–193. [CrossRef] [Google Scholar]
  • Scheffer M., Hosper S.H., Meijer M.L., Moss B. and Jeppesen E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275–279. [Google Scholar]
  • Schneider S. and Melzer A., 2004. Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters. Hydrobiologia, 527, 195–207. [CrossRef] [Google Scholar]
  • Small H., Kornijów R. and Ligęza S., 2005. The effect of catchment on water quality and eutrophication risk of five shallow lakes (Polesie Region, Eastern Poland). Pol. J. Ecol., 53, 313–327. [Google Scholar]
  • Smith C.S. and Barko J.W., 1990. Ecology of Eurasian watermilfoil. J. Aquat. Plant Manage., 28, 55–64. [Google Scholar]
  • Smolders A.J.P., Lamers L.P.M., den Hartog C. and Roelofs J.G.M., 2003. Mechanisms involved in the decline of Stratiotes aloides L. in The Netherlands: sulphate as a key variable. Hydrobiologia, 506–509, 603–610. [CrossRef] [Google Scholar]
  • Squires L. and van der Valk A.G., 1992. Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Can. J. Bot., 70, 1860–1867. [CrossRef] [Google Scholar]
  • ter Braak C.J.F. and Šmilauer P., 2002. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, New York, USA. [Google Scholar]
  • Tobiessen P. and Snow P.D., 1984. Temperature and light effects on the growth of Potamogeton crispus in Collins Lake, New York State. Can. J. Bot., 62, 2822–2826. [CrossRef] [Google Scholar]
  • Toivonen H. and Huttunen P., 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat. Bot., 51, 197–221. [CrossRef] [Google Scholar]
  • van de Bund W.J. and van Donk E., 2004. Effects of fish and nutrient additions on food-web stability in a charophyte-dominated lake. Freshwater Biol., 49, 1565–1573. [CrossRef] [Google Scholar]
  • van den Berg M.S., Scheffer M., van Nes E. and Coops H., 1999. Dynamics and stability of Chara sp and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia, 408, 335–342. [CrossRef] [Google Scholar]
  • van Geest G., 2005. Macrophyte succession in floodplain lakes. Spatio-temporal patterns in relation to hydrology, lake morphology and management. Thesis, Wageningen University, The Netherlands. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.