Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 19 - 26
DOI https://doi.org/10.1051/limn/2016030
Published online 09 January 2017
  • Bakker E.S. and Hilt S., 2016. Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquat. Ecol., 50, 485–498. [CrossRef] [Google Scholar]
  • Bovo-Scomparin V.M. and Train S., 2008. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia, 610, 331–344. [CrossRef] [Google Scholar]
  • Dembowska E., 2015. Seasonal variation in phytoplankton and aquatic plants in floodplain lakes (lower Vistula River, Poland). Wetlands. Ecol. Manage., 23, 535–549. [Google Scholar]
  • Dembowska E. and Napiórkowski P., 2015. A case study of the planktonic communities in two hydrologically different oxbow lakes, Vistula River, Central Poland. J. Limnol., 74, 346–357. [Google Scholar]
  • Dembowska E., Głogowska B. and Dąbrowski K., 2012. Dynamics of algae communities in an oxbow lake (Vistula River, Poland). Arch. Pol. Fish., 20, 27–37. [CrossRef] [Google Scholar]
  • de Melo S. and Huszar V.L.M., 2000. Phytoplankton in an Amazonian flood-plain lake (Lago Batata, Brasil): diel variation and species strategies. J. Plankton Res., 22, 63–76. [Google Scholar]
  • Dynesius M. and Nilsson C., 1994. Fragmentation and flow regulation of river systems in the Northern Third of the World. Science, 266, 753–762. [CrossRef] [PubMed] [Google Scholar]
  • Follner K., Hofacker A., Glaeser J., Dziock F., Gerisch M., Foeckler F., Ilg Ch., Schanowski A., Scholza M. and Henle K., 2010. Accurate environmental bioindication in floodplains in spite of an extreme flood event. River Res. Applic., 26, 877–886. [CrossRef] [Google Scholar]
  • Grabowska M., Glińska-Lewczuk K., Obolewski K., Burandt P., Kobus S., Dunalska J., Kujawa R., Goździejewska A. and Skrzypczak A., 2014. Effects of hydrological and physicochemical factors on phytoplankton communities in floodplain lakes. Pol. J. Environ. Stud., 23, 713–725. [Google Scholar]
  • Hillebrand H., Dürselen C., Kirschtel D., Pollingher U. and Zohary T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403–424. [Google Scholar]
  • Huszar V.L.M. and Reynolds C.S., 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brasil): responses to gradual environmental change. Hydrobiologia, 346, 169–181. [CrossRef] [Google Scholar]
  • IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C.B., Barros V., Stocker T.F., Qin D., Dokken D.J., Ebi K.L., Mastrandrea M.D., Mach K.J., Plattner G.-K., Allen S.K., Tignor M. and Midgley P.M. (eds.), A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 582 p. [Google Scholar]
  • Junk W.J., Bayley P.B. and Sparks R.E., 1989. The flood pulse concept in river-floodplain systems. In: Dodge D.P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences, Dept. of Fisheries and Oceans, Ottawa, 106, 110–127. [Google Scholar]
  • Makowski J., 1998. Wały przeciwpowodziowe dolnej Wisły, historyczne kształtowanie, obecny stan i zachowanie w czasie znacznych wezbrań. Część druga: odcinek od Torunia do Białej Góry. Wydawnictwo Instytutu Budownictwa Wodnego PAN, Biblioteka Naukowa Hydrotechnika, Gdańsk, 469 p. (in Polish). [Google Scholar]
  • Mihaljević M. and Stević F., 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat. Ecol., 45, 335–349. [CrossRef] [Google Scholar]
  • Mihaljević M., Stević F., Horvatić J. and Hackenberger Kutuzović B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia, 618, 77–88. [Google Scholar]
  • Mihaljević M., Špoljarić D., Stević F., Cvijanović V. and Hackenberger Kutuzović B., 2010. The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: shift to a clear state. Limnologica, 40, 260–268. [CrossRef] [Google Scholar]
  • Mihaljević M., Pfeiffer T.Ž., Stević F. and Špoljarić D., 2013. Dynamics of phytoplankton and periphytic algae in a Danubian floodplain lake: a comparative study under altered hydrological conditions. Fres. Environ. Bull., 22, 2516–2523. [Google Scholar]
  • Mur L.R., Skulberg O.M., Utkilen H., 1999. Cyanobacteria in the environment. In: Chorus I. and Bartram J. (eds.), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, E&FN Spon on behalf of WHO, London, pp. 15–40. [Google Scholar]
  • Napiórkowski P. and Napiórkowska T., 2014. The impact of catastrophic flooding on zooplankton. Pol. J. Environ. Stud., 23, 409–417. [Google Scholar]
  • Nusch E.A., 1980. Comparison of different methods for chlorophyll and phaeopigment. Arch. Hydrobiol. Beih. Ergebn. Limno., 14, 14–16. [Google Scholar]
  • O'Farrell I., Vinocur A. and de Tezanos Pinto P., 2014. Long-term study of bloom-forming cyanobacteria in a highly fluctuating vegetated floodplain lake: a morpho-functional approach. Hydrobiologia, 752, 91–102. [CrossRef] [Google Scholar]
  • Padisák J., Crossetti L.O. and Naselli-Flores L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621, 1–19. [CrossRef] [Google Scholar]
  • Reynolds C.S., 2006. Ecology of Phytoplankton, Cambridge University Press, Cambridge, 535 p. [Google Scholar]
  • Reynolds C.S., Huszar V., Kruk C., Naselli-Flores L. and Melo S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24, 417–428. [Google Scholar]
  • Scheffer M. and Jeppesen E., 1998. Alternative stable state. In: Scheffer M. (ed.), Ecology of Shallow Lakes, Chapman and Hall, London. [Google Scholar]
  • Schemel L.E., Sommer T.R., Müller-Solger A.B. and Harrell W.C., 2004. Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain of the Sacramento River, CA, U.S.A. Hydrobiologia, 513, 129–139. [CrossRef] [Google Scholar]
  • Stević F., Mihaljević M. and Špoljarić D., 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia, 709, 143–158. [CrossRef] [Google Scholar]
  • Sun J. and Liu D., 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., 25, 1331–1346. [Google Scholar]
  • Tockner K., Schiemer F., Baumgartner C., Kum G., Weigand E., Zweimuller I. and Ward J.V., 1999. The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system. Regul. Rivers. Res. Mgtm., 15, 245–258. [Google Scholar]
  • Tockner K., Malard F. and Ward J.V., 2000. An extension of the flood pulse concept. Hydrol. Process., 14, 2861–2883. [Google Scholar]
  • Train S. and Rodrigues L.C., 1998. Temporal fluctuations of the phytoplankton community of the Baía River, in the upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia, 361, 125–134. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur vervollkommnung der quantitativen phytoplankton methodik. Mitt. Int. Verein. Theor. Angew. Limnol., 9, 1–38. [Google Scholar]
  • van Donk E., Gulati R.D., Iedema A. and Meulemans J.T., 1993. Macrophyte-related shifts in the nitrogen and phosphoruscontents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia, 251, 19–26. [CrossRef] [Google Scholar]
  • Ward J.V., Tockner K., Arscott D.B. and Claret C., 2002. Riverine landscape diversity. Freshw. Biology, 47, 517–539. [Google Scholar]
  • Wetzel R., 2001. Limnology: Lake and River Ecosystems, Academic Press, San Diego, 1006 p. [Google Scholar]
  • Wojciechowska W., Pasztaleniec A., Solis M., Turczyński M. and Dawidek J., 2005. Phytoplankton of two river lakes in relation to flooding period (River Bug, eastern Poland). Pol. J. Ecol., 53, 419–425. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.