Free Access
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 4, 2014
Page(s) 315 - 323
Published online 13 November 2014
  • Allan J.D., 2004. Influence of land use and landscape setting on the ecological status of rivers. Limnetica, 23, 187–198. [Google Scholar]
  • American Public Health Association, American Water Works Association, and Water Environment Federation, 1998. Standard Methods for the Examination of Water and Wastewater (20th edn,), American Public Health Association, Washington, DC, 1183 p. [Google Scholar]
  • Balayla D.J. and Moss B., 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquat. Ecol., 37, 417–435. [Google Scholar]
  • Boix D., Biggs J., Céréghino R., Hull A.P., Kalettka T. and Oertli B., 2012. Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia, 689, 1–9. [CrossRef] [Google Scholar]
  • Brylińska M., 1991. Freshwater fishes of Poland (Ryby słodkowodne Polski), Polish Scientific Publishers PWN, Warsaw, 521 p. [Google Scholar]
  • Céréghino R., Biggs J., Oertli B. and Declerck S., 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia, 597, 1–6. [Google Scholar]
  • Dalu T., Clegg B. and Nhiwatiwa T., 2012. Macroinvertebrate communities associated with littoral zone habitats and the influence of environmental factors in Malilangwe Reservoir, Zimbabwe. Knowl. Manag. Aquat. Ecosyst., 406, 5–15. [Google Scholar]
  • Declerck S., De Bie T., Ercken D., Hampel H., Schrijvers S., Van Wichelen J., Gillard V., Mandiki R., Lossonf B., Bauwens D., Keijers S., Vyverman W., Goddeeris B., De Meester L., Brendonck L. and Martens K., 2006. Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol. Conserv., 131, 523–532. [Google Scholar]
  • De Paggi S.B. and Devercelli M., 2011. Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water Air Soil Poll., 218, 93–108. [Google Scholar]
  • Di Prinzio C.Y., Casaux R.J. and Miserendino M.L., 2009. Effects of land use on fish assemblages in Patagonian low order streams. Ann. Limnol. - Int. J. Lim., 45, 267–277. [Google Scholar]
  • Dodson S.I., Everhart W.R., Jandl A.K. and Krauskopf S.J., 2007. Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia, 579, 393–399. [CrossRef] [Google Scholar]
  • Ejsmont-Karabin J. and Hutorowicz A., 2011. Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. St., 40, 71–76. [Google Scholar]
  • Ejsmont-Karabin J. and Kruk M., 1998. Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia, 387–388, 241–249. [CrossRef] [Google Scholar]
  • Elliott J.I., 1977. Seasonal changes in the abundance and distribution of planktonic rotifers in Grasmere (English Lake District). Freshw. Biol., 7, 147–166. [Google Scholar]
  • Flößner D., 2000. Die Haplopoda und Cladocera Mitteleuropas, Backhuys Publishers, Leiden, 428 p. [Google Scholar]
  • Grochowska J.K. and Brzozowska R., 2013. The influence of different recultivation methods on the water buffer capacity in a degraded urban lake. Knowl. Managt. Aquatic Ecosyst., 410, 01. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hanazato T. and Yasuno M., 1989. Influence of overwintering Daphnia on spring zooplankton communities: an experimental study. Ecol. Res., 4, 323–338. [Google Scholar]
  • Hansson L.A., Nicolle A., Brodersen J., Romare P., Skov C. and Brönmark C., 2007. Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. Limnol. Oceanogr., 207, 696–706. [Google Scholar]
  • Iglesias C., Goyenola G., Mazzeo N., Meerhoff M., Rodó E. and Jeppesen E., 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia, 584, 179–189. [CrossRef] [Google Scholar]
  • Lampert W., Lampert K.P. and Larsson P., 2010. Coexisting overwintering strategies in Daphnia pulex: a test of genetic differences and growth responses. Limnol. Oceanogr., 55, 1893–1900. [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, 284 p. [Google Scholar]
  • Lucena-Moya P. and Duggan I.C., 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol., 45, 279–287. [Google Scholar]
  • McGavigan C., 2012. A quantitative method for sampling littoral zooplankton in lakes: the active tube. Limnol. Oceanogr.–Meth., 10, 289–295. [CrossRef] [Google Scholar]
  • Nicolle A., Hansson L.-A. and Brönmark C., 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia, 652, 119–125. [CrossRef] [Google Scholar]
  • Norris V., 1993. The use of buffer zones to protect water quality: a review. Water Resour. Manag., 7, 257–272. [Google Scholar]
  • Park S.-R., Lee H.-J., Lee S.-W., Hwang S.-J., Byeon M.-S., Joo G.-J., Jeong K.-S., Kong D.-S. and Kim M.-C., 2011. Relationships between land use and multi-dimensional characteristic of streams and rivers at two different scales. Ann. Limnol. - Int. J. Lim., 47, S107–S116. [Google Scholar]
  • Pawuła-Piwowarczyk R., 1992. Spatial Management in the Cities and Communes of Wielkopolska Region. (Gospodarka przestrzenna miast i gmin w regionie Wielkopolski), Zakład Poligraficzny Politechniki Poznańskiej, Poznań, 353 p. [Google Scholar]
  • Pourriot R., 1970. Quelques Trichocerca (Rotifères) et leurs régimes alimentaires. Ann. Hydrobiol., 1, 155–171. [Google Scholar]
  • Pourriot R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beiheft, 8, 243–260. [Google Scholar]
  • Radwan S., Bielańska-Grajner I. and Ejsmont-Karabin J., 2004. Rotifers Rotifera. Freshwater fauna of Poland (Wrotki Rotifera. Fauna słodkowodna Polski), Oficyna Wydawnicza Tercja, Łódź, 447 p. [Google Scholar]
  • Ruttner-Kolisko A., 1980. The abundance and distribution of Filinia terminalis in various types of lakes as related to temperature, oxygen, and food. Hydrobiologia, 73, 169–175. [CrossRef] [Google Scholar]
  • Rybak J.I. and Błędzki L.A., 2010. Freshwater Planktonic Crustaceans: Identification key. (Słodkowodne skorupiaki planktonowe), Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 366 p. [Google Scholar]
  • Sobczyński T. and Joniak T., 2009. Vertical changeability of physical-chemical features of bottom sediments in three lakes in aspect type of water mixis and intensity of human impact. Pol. J. Environ. Stud., 18, 1093–1099. [Google Scholar]
  • Špoljar M., Dražina T., Šmargač J., Borojevič K.K. and Žutnić, P., 2012. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 161–175. [Google Scholar]
  • Stansfield J.H., Perrow M.R., Tench L.D., Jowitt A.J.D. and Taylor A.A.L., 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 342–343, 229–240. [CrossRef] [Google Scholar]
  • Starmach K., 1989. Plankton roślinny wód słodkich. Metody, badania i klucze do oznaczania gatunków występujących w wodach Europy Środkowej (Freshwater Phytoplankton: Methods and the Identification Key of Central European Species), Vol. I, Polska Akademia Nauk, Polskie Wydawnictwo Naukowe, 496 p. [Google Scholar]
  • Sterner R.W., 1989. The role of grazers in phytoplankton succession. In: Sommer U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer, New York, 107–170. [CrossRef] [Google Scholar]
  • Symons C.C., Arnott S.E. and Sweetman J.N., 2012. Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia, 694, 131–141. [CrossRef] [Google Scholar]
  • Tessier C., Cattaneo A., Pinel-Alloul B., Galanti G. and Morabito G., 2004. Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy). J. Limnol., 63, 190–198. [Google Scholar]
  • Tinson S. and Laybourn-Parry J., 1985. The behavioural responses and tolerance of freshwater benthic cyclopoid copepods to hypoxia and anoxia. Hydrobiologia, 127, 257–263. [CrossRef] [Google Scholar]
  • Tõnno I., Künnap H. and Nõges T., 2003. The role of zooplankton grazing in the formation of ‘clear water phase’ in a shallow charophyte-dominated lake. Hydrobiologia, 506–509, 353–358. [Google Scholar]
  • Warfe D.M. and Barmuta L.A., 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia, 141, 171–178. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.