Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 4, 2014
Page(s) 299 - 314
DOI https://doi.org/10.1051/limn/2014023
Published online 28 October 2014
  • Abedon S.T., 2006. Phage ecology. In: Abedon C.S.T. (ed.), The Bacteriophages, Oxford University Press, Oxford, 37–46. [Google Scholar]
  • Agawin N.S.R., Duarte C.M. and Agustí S., 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr., 45, 591–600. [CrossRef] [Google Scholar]
  • Anneville O. and Leboulanger C., 2001. Long-terms changes in the vertical distribution of phytoplankton biomass and primary production in Lake Geneva: a response to the oligotrophication. Atti. Assoc. Ital. Oceanol. Limnol., 14, 25–35. [Google Scholar]
  • Auguet, J.C., Barberan, A. and Casamayor, E.O., 2010. Global ecological patterns in uncultured archaea. ISME J. 4, 182–190. [CrossRef] [PubMed] [Google Scholar]
  • Baines S.B. and Pace M.L., 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater system. Limnol. Oceanogr., 36, 1078–1090. [CrossRef] [Google Scholar]
  • Bell T. and Kalff J., 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr., 46, 1243–1248. [CrossRef] [Google Scholar]
  • Ben Mammou, A., 1998. Barrages Nebraska, Sidi Salem, Sidi Saâd et Sidi Boubaker. Quantification, étude sédimentologique et géotechnique des sédiments piégés. Apports des images satellitaires. Thèse Doct. Univ. Tunis, II, 345 p. [Google Scholar]
  • Ben Mammou A. and Louati M.H., 2007. Evolution temporelle de l'envasement des retenues de barrages de Tunisie. Rev. Sci. Eau, 20, 201–211. [Google Scholar]
  • Ben Rejeb Jenhani A., Bouaïcha N., El Herry S., Fathalli A., Zekri I., Haj Zekri S., Limam L., Alouini S. and Romdhane M.S., 2006. Les cyanobactéries et leurs potentialités toxiques dans les retenues des barrages du Nord de la Tunisie. Archs. Inst. Pasteur Tunis, 83, 71–81. [Google Scholar]
  • Ben Rejeb Jenhani A., Fathalli A. and Romdhane M.S., 2012. Phytoplankton assemblages in Bir M'Cherga freshwater reservoir (Tunisia). Water Resour. Wetlands, 136–141. [Google Scholar]
  • Benzarti Z., 2003. La pluviométrie en Tunisie: Analyse des années très pluvieuse. In: Arnould P. and Hotyat M. (eds.), Eau et environnement: Tunisie et milieux méditerranéens, ENS Edition, Lyon, 63–78. [Google Scholar]
  • Berdjeb, L., Pollet, T., Domaizon, I. and Jacquet, S., 2011. Effects of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. BMC Microb., 11, 1–18. [CrossRef] [Google Scholar]
  • Bergh O., Borsheim K.Y., Bratbak G. and Heldal M., 1989. High abundance of viruses found in aquatic environments. Nature, 340, 467–468. [CrossRef] [PubMed] [Google Scholar]
  • Bettarel Y., Sime-NGando T., Amblard C., Carrias J.-F. and Portelli C., 2003. Virioplankton and microbial communities in aquatic systems: a seasonal study in two lakes of different trophy. Freshw. Biol., 48, 810–822. [CrossRef] [Google Scholar]
  • Bettarel Y., Sime-NGando T., Amblard C. and Dolan J., 2004. Viral activity in two contrasting lake ecosystems. Appl. Environ. Microb., 70, 2941–2951. [CrossRef] [Google Scholar]
  • Bratbak G., Heldal M., Thingstad T.F. and Tuomi P.I., 1996. Dynamics of virus abundance in coastal sea water. FEMS Microb. Ecol., 19, 263–269. [CrossRef] [Google Scholar]
  • Breitbart M., 2012. Marine viruses: truth or dare. Annu. Rev. Mar. Sci., 4, 425–448. [CrossRef] [Google Scholar]
  • Brum J.R., Stewart G.F., Jiang S.C. and Jellison R., 2005. Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aqua. Microb. Ecol., 41, 247–260. [CrossRef] [Google Scholar]
  • Brussaard C.P.D., 2004. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microb., 70, 1506–1513. [CrossRef] [Google Scholar]
  • Callieri C., 2007. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw. Rev., 1, 1–28. [CrossRef] [Google Scholar]
  • Callieri C. and Pinolini M.L., 1995. Picoplankton in lake maggiore, Italy. Int. Rev. Gesamten. – Hydrobiol., 80, 491–501. [CrossRef] [Google Scholar]
  • Callieri C. and Stockner J.G., 2002. Freshwater autotrophic picoplankton: a review. J. Limnol., 61, 1–14. [Google Scholar]
  • Carrias J.F., Amblard C. and Bourdier G., 1996. Protistan bacterivory in a oligo mesotrophic lake: importance of attached ciliates and flagellates. Microb. Ecol., 31, 249–268. [CrossRef] [PubMed] [Google Scholar]
  • Casamayor E.O., Schafer H., Baneras L., Pedro-Alio C. and Muyzer G., 2000. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl. Environ. Microb., 66, 499–508. [CrossRef] [Google Scholar]
  • Castberg T., Larsen A., Sandaa R.A., Brussaard C.P.D., Egge J.K., Heldal M., Thyrhaug R., Van Hannen E.J. and Bratbak G., 2001. Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Mar. Ecol. Prog. Ser., 221, 39–46. [CrossRef] [Google Scholar]
  • Cellamare M., Rolland A. and Jacquet S., 2010. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol., 22, 87–100. [CrossRef] [Google Scholar]
  • Chang J., Lin K.H., Chen K.M., Gong G.C. and Chiang K.P., 2003. Synechococcus growth and mortality rates in the East China Sea: range of variations and correlation with environmental factors. Deep Sea Res. II, 50, 1265–1278. [CrossRef] [Google Scholar]
  • Chen F., Lu J.R., Binder B.J., Liu Y.C. and Hodson R.E., 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl. Environ. Microb., 67, 539–545. [CrossRef] [Google Scholar]
  • Chisholm S.W., Armbrust E.W. and Olson R.J., 1986. The individual cell in phytoplankton ecology: cell cycles and applications of flow cytometry. In: Platt T. and Li W.K.W. (eds.), Photosynthetic Picoplankton. Can. J. Fish. Aqua. Sci. Ottawa, 343–369. [Google Scholar]
  • Clasen J.L., Brigden S.M., Payet J.P. and Suttle C.A., 2008. Evidence that viral abundance across oceans and lakes is driven by different biological factors. Freshw. Biol., 53, 1090–1100. [CrossRef] [Google Scholar]
  • Cochlan W.P., Wilkner J., Steward G.F., Smith D.C. and Azam F., 1993. Spatial distribution of viruses, bacteria, chorophyll a in neritic, oceanic and estuarine environments. Mar. Ecol. Prog. Ser., 92, 77–87. [CrossRef] [Google Scholar]
  • Colombet J., Sime-Ngando T., Cauchie H.M., Fonty G., Hoffmann L. and Demeure G., 2006. Depth-related gradients of viral activity in Lake Pavin. Appl. Environ. Microb., 72, 4440–4445. [CrossRef] [Google Scholar]
  • Culley A.I. and Welschmeyer N.A., 2002. The abundance, distribution and correlation of viruses, phytoplankton and prokaryotes along a Pacific Ocean transect. Limnol. and Ocean., 47, 1508–1513. [CrossRef] [Google Scholar]
  • Dauta A. and Feuillade J., 1995. Croissance et dynamique des populations algales. In: Pourriot R. and Meybeck M. (eds.), Limnologie générale, Masson, Paris Milan, Barcelone. Collec. Ecol. 328–350. [Google Scholar]
  • DeBruyn J.M., Leigh-Bell J.A., McKay R.M.L., Bourbonniere R.A. and Wilheim S.W., 2004. Microbial distributions and the impact of phosphorus on bacterial activity in Lake Erie. J. Great Lake Res. 30, 166–183. [CrossRef] [Google Scholar]
  • Djemali I., Kraïem M.M., Cadic N., Porteau J.P., El Abed A. and Jarboui O., 2003. Evaluation de la biomasse piscicole en eau douce par echoprospection: application à la retenue de Sidi Salem. Bull. Inst. Natn. Sci. Tech. Mer Salammbô, 30, 23–32. [Google Scholar]
  • Dolédec S. and Chessel D., 1989. Rythmes saisonniers et composantes stationnelles en milieu aquatique. II. Prise en compte et élimination d'effets dans un tableau faunistique. Acta Oecol. Oec. Gen., 10, 207–332. [Google Scholar]
  • Dorigo U., Jacquet S. and Humbert J.F., 2004. Cyanophage diversity, inferred from 20 gene analyses, in the largest natural lake in France, Lake Bourget. Appl. Environ. Microb., 70, 1017–1022. [CrossRef] [Google Scholar]
  • Ducklow H.W., Schultz G., Raymond P., Bauer J. and Shiah F.K., 1999. Bacterial dynamics in large and small estuaries. In: Bell C.R., Brylinsky M. and Johnson-Green P. (eds.), Microb. Ecol. of estua. – Atlan. Can, Society for Microb. Ecol., Halifax Canada, 105–111. [Google Scholar]
  • Duhamel S. and Jacquet S., 2006. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J. Microb. Methods, 64, 316–332. [CrossRef] [Google Scholar]
  • El Herry S., Fathalli A., Ben Rejeb Jenhani A. and Bouaïcha N., 2008. Seasonal occurrence and toxicity of Microcytis spp. and Oscillatoria tenuis in the Lebna Dam, Tunisia. Water Res., 42, 1263–1273. [CrossRef] [PubMed] [Google Scholar]
  • Fahnenstiel G.L. and Carrick H.J., 1992. Phototrophic picoplankton in lakes Huron and Michigan: abundance, distribution, composition and contribution to biomass and production. Can. J. Fish. Aqua. Sci., 49, 379–388. [CrossRef] [Google Scholar]
  • Fathalli A., Ben Rejeb Jenhani A., Romdhane M.S. and Bouaïcha N., 2006. Contribution à la caractérisation phytoplanctonique et écotoxicologique des eaux de la retenue de barrage Kasseb. Water, Waste and Environment Research, 6, 33–42. [Google Scholar]
  • Fischer U.R. and Velimirov B., 2002. High control of bacterial production by viruses in a eutrophic oxbow lake. Aqua. Microb. Ecol., 27, 1–12. [CrossRef] [Google Scholar]
  • Fouilland E. and Mostajir B., 2010. Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwater, transitional, coastal and oceanic waters. FEMS – Microb. Ecol., 73, 419–429. [CrossRef] [Google Scholar]
  • Frederickson C.M., Short S.M. and Suttle C.A., 2003. The physical environment affects cyanophage communities in British Columbia inlets. Microb. Ecol. 46, 348–357. [CrossRef] [PubMed] [Google Scholar]
  • Fuhrman J.A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399, 541–548. [CrossRef] [PubMed] [Google Scholar]
  • Fuhrman J.A. and Suttle C.A., 1993. Viruses in marine planktonic system. Oceanography, 6, 51–63. [CrossRef] [Google Scholar]
  • Goddard V., Baker A.C., Davy J.E. et al., 2005. Temporal distribution of viruses, bacteria and phytoplankton throughout the water column in a freshwater hypereutrophic lake. Aquat. Microb. Ecol. 39, 211–223. [CrossRef] [Google Scholar]
  • Harris G.P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, model and management. Can. J. Fish. Aqua. Sci., 37, 877–900. [CrossRef] [Google Scholar]
  • Hennes K.P. and Simon M., 1995. Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl. Environ. Microb., 61, 333–340. [Google Scholar]
  • Herbland A., Le Bouteiller A. and Raimbault P., 1985. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep Sea Res., 32, 819–836. [CrossRef] [Google Scholar]
  • Houlahan J.E., Currie D.J., Cottenie K., Cumming G.S., Ernest S.K., Findlay C.S., Fuhlendorf S.D., Gaedke U., Legendre P., Magnuson J.J., McArdle B.H., Muldavin E.H., Noble D., Russell R., Stevens R.D., Willis T.J., Woiwod I.P. and Wondzell S.M., 2007. Compensatory dynamics are rare in natural ecological communities. Proc. Natl. Acad. Sci. USA, 104, 3273–3277. [CrossRef] [Google Scholar]
  • Jacquet S., Heldal M., Iglesias-Rodriguez D., Larsen A., Wilson W.H. and Bratbak G., 2002. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aqua. Microb. Ecol., 27, 111–124. [CrossRef] [Google Scholar]
  • Jacquet S., Domaizon I., Personnic S., Duhamel S., Heldal M., Pradeep Ram A.S. and Sime-Ngando T., 2005. Estimates of protozoan and virus-mediated mortality of bacterioplankton in Lake Bourget (France). Freshw. Biol., 50, 627–645. [CrossRef] [Google Scholar]
  • Jacquet S., Miki T., Noble R., Peduzzi P. and Wilhelm S., 2010. Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in microbial oceanography and limnology. Adv. Oceanogr. Limnol., 1, 71–101. [CrossRef] [Google Scholar]
  • Jacquet S., Dorigo U. and Personnic S., 2013. A few tests prior to flow cytometry and epifluorescence analyses of freshwater bacterioand virioplankton communities, in: Flow Cytometry: Principles,Methodology and Applications, Chapter 1, Related Nova publication, Nova Publishers Inc., New York, 1–30 p. [Google Scholar]
  • Kelley C.A., Coffin R.B. and Cifuentes L.A., 1998. Stable isotope evidence for alternative bacterial carbon sources in the Gulf of Mexico. Limnol. Oceanogr., 43, 1962–1969. [Google Scholar]
  • Koroleff F., 1976. Determination of phosphorus. In: Grass-hoff, K. (ed.), Methods of Seawater Analysis. Verlag Chemie, Weinheim, New York. [Google Scholar]
  • Larsen A., T. Castberg R.A., Sandaa C.P.D., Brussaard J., Egge M., Heldal A., Paulino R., Thyrhaug E., VanHannen J. and Bratbak G., 2001. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser., 221, 47–57. [CrossRef] [Google Scholar]
  • Lebaron P., Servais P., Baudoux A.C., Bourrain M., Courties C. and Parthuisot N., 2002. Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aqua. Microb. Ecol., 28, 131–140. [CrossRef] [Google Scholar]
  • Li W.K.W. and Dickie P.M., 2001. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal Inlet (Belford bassin) by flow cytometry. Cytometry 44, 236–246. [CrossRef] [PubMed] [Google Scholar]
  • Li W.K.W., Subba-Rao D.V., Harrison W.G., Smith J.C., Cullen J.J., Irwin B. and Platt T., 1983. Autotrophic picoplankton in the tropical ocean. Science, 219, 292–29. [CrossRef] [PubMed] [Google Scholar]
  • Liu H.B., Dagg M., Campbell L. and Urban-Rich J., 2004. Picophytoplankton and bacterioplankton in the Mississippi River Plume and its adjacent waters. Estuaries, 27, 147–156. [CrossRef] [Google Scholar]
  • Marie D., Brussaard C.P.D., Thyrhaug R., Bratbak G. and Vaulot D., 1999. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microb. 65, 45–52. [Google Scholar]
  • Marie D., Partensky F., Simon N., Guillou L. and Vaulot D., 2000. Flow cytometry analysis of marine picoplankton. In: DeMaggio S. (ed.), Living Colors: Protocols in Flow Cytometry and Cell Sorting, Springer, Berlin, 421–454. [Google Scholar]
  • Mathias C.B., Kirchner A.K.T. and Velimirov B., 1995. Seasonal variations of virus abundance and viral control the bacterial production in a backwater system of the Danube River. Appl. Environ. Microb., 61, 3734–3740. [Google Scholar]
  • Mouelhi S., Defaye D. and Balvay G., 2000. Présence de Mesocyclops ogunnus Onabamiro, 1957 (Crustacea: Copepoda) en Tunisie. Ann. Limnol. - Int. J. Lim., 36, 95–99. [CrossRef] [EDP Sciences] [Google Scholar]
  • Nagata T., Takai K. and Kawanobe K., 1994. Autotrophic picoplankton in southern Lake Baikal abundance, growth and grazing mortality during summer. J. Plank. Res., 16, 945–959. [CrossRef] [Google Scholar]
  • Padisák J., Krienitz L., Scheffler W., Koschel R., Kristiansen J. and Grigorszky I.,1998. Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia, 369/370, 179–197. [CrossRef] [Google Scholar]
  • Padisák J., Barbosa F.A.R., Koschel R. and Krienitz L., 2003. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Arch. Hydrobiol. Spec. Issues. Adv. Limnol., 58, 175–199. [Google Scholar]
  • Pan L.A., Zhang L.H., Zhang J., Gasol J.M. and Chao M., 2005. On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microbiol. Ecol., 52, 243–253. [CrossRef] [PubMed] [Google Scholar]
  • Parvathi A., Zhong X., Pradeep Ram A.S. and Jacquet S., 2014. Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva. Hydrol. Earth Syst. Sci., 18, 1073–1087. [CrossRef] [Google Scholar]
  • Payet J.P. and Suttle C.A., 2008. Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf. J. Mar. Syst., 74, 933–945. [CrossRef] [Google Scholar]
  • Personnic S., Domaizon I., Dorigo U., Berdjeb L. and Jacquet S., 2009. Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia, 627, 99–116. [CrossRef] [Google Scholar]
  • Pradeep Ram, A.S., Arnous, B., Danger, M., Carrias, J.F., Lacroix, G. and Sime-Ngando, T., 2010. High and differential viral infection rates within bacterial ‘morphopopulations’ in a shallow sand pit lake (Lac de Creteil, France). FEMS Microbiol. Ecol., 74, 83–92. [CrossRef] [PubMed] [Google Scholar]
  • Rachiq S., Raoui M., Chadli N., Amblard C., Alaoui M.M., Carria J.F., Sime-Ngando T. and Sargos D., 2002. Potentialités phagotrophes des phytoflagellés dans la retenue de barrage Allal El Fassi (Maroc). Rev. Sci. Eau, 15, 87–99. [Google Scholar]
  • Ryding S.O. and Rast W., 1994. Le contrôle de l'eutrophisation des lacs et des réservoirs. Collection Sciences de l'environnement. Masson UNESCO Paris, 261 p. [Google Scholar]
  • Sarmiento, J.L. and Gruber, N., 2006. Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, New Jersey, USA. [Google Scholar]
  • Schallenberg, M. and Burns C.W., 2001. Tests of autotrophic picoplankton as early indicators of nutrient enrichment in an ultra-oligotrophic lake. Freshw. Biol., 46, 27–37. [CrossRef] [Google Scholar]
  • Sellami I., Ayadi H., Bouain A., Aleya L. and Mhamdi M.H., 2009. Distribution of zooplankton related to environmental factors in three interconnected reservoirs: Kasseb, Mornaguia and Ghdir El Goulla (North of Tunisia). Ann. Limnol. - Int. J. Lim. 45, 107–117. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sellami I., Ben Romdhane S., Guermazi W., El Bour M., Hamza A., Mhamdi M.H., Pinel-Alloul B., Aleya L. and Ayadi H., 2012. Seasonal dynamics of plankton communities coupled with environmental factors in a semi arid area: Sidi Saâd reservoir (Center of Tunisia). Afric. J. Biotechnol., 11, 865–877. [Google Scholar]
  • Shiah F.K. and Ducklow H.W., 1994. Temperature regulation of heterotrophic bacterioplankton biomass, production and specific growth rate in the Chesapeake Bay. Limnol. Oceanogr., 39, 1243–1258. [CrossRef] [Google Scholar]
  • Short S.M. and Suttle C.A., 2003. Temporal dynamics of natural communities of marine algal viruses and eukaryotes. Aquat. Microb. Ecol., 32, 107–119. [CrossRef] [Google Scholar]
  • Simek K., Pernthaller J., Weinbauer M.G., Hornak K., Dolan J.R., Nedoma J., Masin M. and Amann R., 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microb., 67, 2723–2733. [CrossRef] [Google Scholar]
  • Stockner J.G. and Antia N.J., 1986. Algal picoplankton from marine and freshwater: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci., 43, 2472–2503. [CrossRef] [Google Scholar]
  • Stockner J.G. and Shortreed K.S., 1994. Autotrophic picoplankton community dynamics in a pre-alpine lake in British Columbia, Canada. Hydrobiologia, 274, 133–142. [CrossRef] [Google Scholar]
  • Stockner J.G., Callieri C. and Cronberg G., 2000. Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton B. and Potts M. (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer Academic Publishers, Dordrect, 195–231 p. [Google Scholar]
  • Suttle, C.A., 2005. Viruses in the sea. Nature, 437, 356–361. [CrossRef] [PubMed] [Google Scholar]
  • Szelag-Wasielewska E., 1999. Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia, 342/343, 79–85. [CrossRef] [Google Scholar]
  • Tijdens M., Hans L., Hoogveld Miranda P., Kamst-van A., Stefan G.H., Simis Baudoux A., Hendrikus C., Laanbroek J. and Herman J.G., 2008. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Microb. Ecol., 56, 29–42. [CrossRef] [PubMed] [Google Scholar]
  • Tsai A.Y., Gong G.C., Chiang K.P., Chao C.F., Liao H.K. and Shiah F.K., 2011. Temporal and spatial variations of picoplankton and nanoplankton and short-term variability related to stormy weather in the Danshui River estuary in northern Taiwan. Terrest. Atmos. Ocea. Sci., 22, 79–89. [CrossRef] [Google Scholar]
  • Turki S., 2002. Contribution à l'étude bio-écologique des rotifères, cladocères, copépodes des eaux continentales Tunisiennes et dynamique saisonnière du zooplancton de la retenue du barrage Bir M'Chergua. Thèse doct. instit. Nat. Sci. Tech. de la mer. 203 p. [Google Scholar]
  • Vaque D., Casamayor E.O. and Gasol J.M., 2001. Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content. Aquat. Microb. Ecol., 25, 163–177. [CrossRef] [Google Scholar]
  • Vaulot D., 1989. CYTOPC: processing software for flow cytometric data. Signal Noise, 2, 8. [Google Scholar]
  • Vila X. and Abella C.A., 2001. Light- harvesting adaptations of planktonic phototrophic micro-organisms to different light quality conditions. Hydrobiologia, 452, 15–30. [CrossRef] [Google Scholar]
  • Voros L., Callieri C., Balogh K.V. and Bertoni R., 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia, 369/370, 117–125. [CrossRef] [Google Scholar]
  • Vrede K., Vrede T., Isaksson A. and Karlsson A., 1999. Effects of nutrients (phosphorous, nitogen and carbon) and zooplankton on bacterioplankton and phytoplankton - a seasonal study. Limnol. Oceanogr., 44, 1616–1624. [CrossRef] [Google Scholar]
  • Waite A.M., Safi K.A., Hall J.A. and Nodder S.D., 2000. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr., 45, 87–97. [CrossRef] [Google Scholar]
  • Wakabayashi T. and Ichise S., 2004. Seasonal variation ofphototrophic picoplankton in Lake Biwa (1994–1998). Hydrobiologia, 528, 1–16. [CrossRef] [Google Scholar]
  • Wang B., Liu F., Wang C.Q., Yu, Y. and Wu, Y., 2009. Flow cytometric observation of picophytoplankton community structure in the cascade reservoirs along the Wujiang River, SW China. J. Limnol., 68, 53–63. [CrossRef] [Google Scholar]
  • Wehr J.D., 1993. Effects of experimental manipulation of light and phosphorus supply on competition among picoplankton and nanoplankton in oligotrophic lake. Can. J. Fish. Aquat. Sci. 50, 936–945. [CrossRef] [Google Scholar]
  • Weinbauer M.G., 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev., 28, 127–181. [CrossRef] [PubMed] [Google Scholar]
  • Weinbauer M.G. and Hofle M.G., 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microb., 64, 431–438. [Google Scholar]
  • Weinbauer M.G. and Peduzzi P., 1995. Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates. Mar. Ecol. Prog. Ser., 127, 245–253. [CrossRef] [Google Scholar]
  • Weinbauer M.G. and Rassoulzadegan, F., 2004. Are viruses driving microbial diversification and diversity. Environ. Microb., 6, 1–11. [CrossRef] [Google Scholar]
  • Weisse, T., 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones J.G. (ed.), Advances in Microbial Ecology, Plenum, New York, 327–370. [CrossRef] [Google Scholar]
  • Weisse T. and Schweizer, A., 1991. Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Verhand lungender Internationale Vereinigung fur Theoretische undangewandte Limnologie, 24, 821–825. [Google Scholar]
  • Welschmeyer NA., 1994. Fluorimetric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Ocean., 39, 1985–1992. [CrossRef] [Google Scholar]
  • Whitman W.B., Coleman, D.C. and Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA, 95, 6578–6583. [CrossRef] [Google Scholar]
  • Wilson W.H. and Mann, N.H., 1997. Lysogenic and lytic viral production in marine microbial communities. Aquat. Microb. Ecol., 13, 95–100. [CrossRef] [Google Scholar]
  • Wommack K.E. and Colwell R.R., 2000. Virioplankton: viruses in aquatic ecosystems. Microb. Mol. Biol. Rev., 64, 69–114. [CrossRef] [PubMed] [Google Scholar]
  • Wommack K., Hill, R.T., Kessel, M., Russek-Cohen, E. and Colwell, R.R., 1992. Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microb., 58, 2965–2970. [Google Scholar]
  • Wommack K., Ravel, J., Hill, R.T., Chun J.S. and Colwell R.R., 1999. Population dynamics of Chesapeake bay virioplankton: total community analysis by pulsed-field gel electrophoresis. Appl. Environ. Microbiol., 65, 231–240. [PubMed] [Google Scholar]
  • Worden A.Z. and Not, F., 2008. Ecology and diversity of picoeukaryotes In: Kirchman D. (ed.), Book Chapter in: Microbial Ecology of the Ocean (2nd edn), Wiley, San Francisco. [Google Scholar]
  • Yuan X.C., He, L., Yin, K.D., Pan, G. and Harrison, P.G., 2011. Bacterial distribution and nutrient limitation in relation to different water masses in the coastal and northwestern South China Sea in late summer. Continent. Shelf Res., 31, 1214–1223. [CrossRef] [Google Scholar]
  • Zhang X., Zhen, S., Qingxia, L., Feng, Y., Lei T. and Xiaoping H., 2013. Spatial and temporal variations of picoplankton in three contrasting periods in the Pearl River Estuary, South China. Continent. Shelf Res., 15, 1016–2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.