Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 3, 2013
Page(s) 179 - 190
DOI https://doi.org/10.1051/limn/2013050
Published online 22 August 2013
  • Ács É. and Kiss K.T., 1993. Colonization processes of diatoms on artificial substrates in the River Danube near Budapest (Hungary). Hydrobiologia, 269/270, 307–315. [CrossRef] [Google Scholar]
  • Ács É., Kiss K.T., Szabó K. and Makk J., 2000. Short-term colonization sequence of periphyton on glass slides in a large river (River Danube, near Budapest). Arch. Hydrobiol. Suppl. Algol. Stud., 100, 135–156. [Google Scholar]
  • Ács É., Borsodi A.K., Kröpfl K., Vladár P. and Záray G., 2007. Changes in the algal composition, bacterial metabolic activity and element content of biofilms developed on artificial substrata in the early phase of colonization. Acta Bot. Croat., 66, 89–100. [Google Scholar]
  • Addisie Y. and Medellin A.C., 2012. Allelopathy in aquatic macrophytes: effects on growth and physiology of phytoplanktons. Afr. J. Plant Sci., 6, 270–276. [Google Scholar]
  • Albay M. and Akçaalan R., 2003. Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia, 506–509, 531–540. [CrossRef] [Google Scholar]
  • Algarte V.M., Siqueira N.S., Murakami E.A. and Rodrigues L., 2009. Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Braz. J. Biol., 69, 609–616. [CrossRef] [PubMed] [Google Scholar]
  • Anagnostidis K. and Komárek J., 1985. Modern approach to the classification system of cyanophytes. 1. Introduction. Arch. Hydrobiol. Suppl., 71, 291–302. [Google Scholar]
  • Anagnostidis K. and Komárek J., 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol. Suppl., 80, 327–472. [Google Scholar]
  • APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th edn, American Public Health Association, Washington, DC, 1268 p. [Google Scholar]
  • Azim M.E. and Asaeda T., 2005. Periphyton: structure, diversity and colonization. In: Azim M.E., Verdegem M.C.J., van Dam A.A. and Beveridge M.C.M. (eds.), Periphyton: Ecology, Exploitation and Management, CABI Publishing, Wallingford, 15–34. [Google Scholar]
  • Azim M.E., Beveridge M.C.M., van Dam A.A. and Verdegem M.C.J., 2005. Periphyton and aquatic production: an introduction. In: Azim M.E., Verdegem M.C.J., van Dam A.A. and Beveridge M.C.M. (eds.), Periphyton: Ecology, Exploitation and Management, CABI Publishing, Wallingford, 1–13. [Google Scholar]
  • Bahulikar R.A., 2006. Diatoms from littoral zone of Lake Constance: Diversity, phylogeny, extracellular polysaccharides and bacterial associations. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz, Fachbereich Biologie, Konstanz, 1–14. [Google Scholar]
  • Biggs B.J.F., Stevenson R.J. and Lowe R.L., 1998. A habitat matrix conceptual model for stream periphyton. Arch. Hydrobiol., 143, 21–56. [Google Scholar]
  • Borcard D., Legendre P. and Drapeau P., 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055. [CrossRef] [Google Scholar]
  • Clarke K.R. and Warwick R.M., 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth, 177 p. [Google Scholar]
  • Dodds K.W. and Gudder A.D., 1992. The ecology of Cladophora. J. Phycol., 28, 415–427. [CrossRef] [Google Scholar]
  • Felisberto S.A. and Rodrigues L., 2010. Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil). Acta Sci. Biol. Sci., 32, 373–385. [CrossRef] [Google Scholar]
  • Ferreira F.A., Mormul R.P., Thomaz S.M., Pott A. and Pott V.J., 2011. Macrophytes in the upper Paraná river floodplain: checklist and comparison with other large South American wetlands. Rev. Biol. Trop. (Int. J. Trop. Biol.), 59, 541–556. [Google Scholar]
  • Gaiser E.E., Scinto L.J., Richards J.H., Jayachandran K., Childers D.L., Trexler J.C. and Jones R.D., 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Wat. Res., 38, 507–516. [CrossRef] [Google Scholar]
  • Goldsborough L.G. and Robinson G.G.C., 1996. Patterns in wetlands. In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algal Ecology. Freshwater Benthic Ecosystems, Academic Press, USA, 78–120. [Google Scholar]
  • Gottlieb A.D., Richards J.H. and Gaiser E.E., 2006. Comparative study of periphyton community structure in long and short hydroperiod Everglades marshes. Hydrobiologia, 569, 195–207. [CrossRef] [Google Scholar]
  • Gross E.M., Erhard D. and Iványi E., 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 506, 583–589. [CrossRef] [Google Scholar]
  • Guasch H., Admiraal W. and Sabater S., 2003. Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat. Toxicol., 64, 165–175. [CrossRef] [PubMed] [Google Scholar]
  • Higgins S. and Hann B.J., 1995. Snail grazer-periphyton interactions: the effects of macrophyte removal, inorganic nutrient addition, and organic nutrient addition. UFS (Delta Marsh) Annual Report, 30, 28–37. [Google Scholar]
  • Higgins S.N., Malkin S.Y., Howell E.T., Guildford S.J., Campbell L., Hiriart-Baer V. and Hecky R.E., 2008. An Ecological Review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes. J. Phycol., 44, 839–854. [CrossRef] [PubMed] [Google Scholar]
  • Hindak F., Cyrus Z., Marvan P., Javornicky P., Komarek J., Etll H., Rosa K., Sladečkova A., Popovsky J., Punčocharova M. and Lhotsky O., 1978. Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava. [Google Scholar]
  • Hoagland K.D., Roemer S.C. and Rosowski J.R., 1982. Colonization and community structure of two periphyton assemblages with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot., 69, 188–213. [CrossRef] [Google Scholar]
  • Horvatić J., Mihaljević M. and Stević F., 2003. Algal growth potential of Chlorella kessleri Fott et Nov. in comparison with in situ microphytoplankton dynamics in the water of Lake Sakadaš marshes. Period. Biol., 105, 307–312. [Google Scholar]
  • Huber-Pestalozzi G., 1942. Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil. 2. – E. Schweizerbart'śche Verlagsbuchhandlung (Erwin Nägele), Stuttgart. [Google Scholar]
  • Hustedt F., 1976. Bacillariophyta, Otto Koeltz Science Publishers, Koenigstein. [Google Scholar]
  • Jones I.J. and Sayer C.D., 2003. Does the fish – invertebrate – periphyton cascade precipitate plant loss in shallow lakes? Ecology, 84, 2155–2167. [CrossRef] [Google Scholar]
  • Komárek J. and Anagnostidis K., 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol. Stud., 56, 247–345. [Google Scholar]
  • Komárková J., 1989. Primárni produkce ř as ve slatkovodních ekosysteméch. In: Dykyová D. (ed.), Metody studia ecosystémů, Academia Praha, Praha, 330–347. [Google Scholar]
  • Lakatos G., 1989. Composition of reed periphyton (biotecton) in the Hungarian part of lake Fertö. Biol. Forschun., 71, 125–134. [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data using Canoco, Cambridge University Press, Cambridge, 267 p. [Google Scholar]
  • Liboriussen L., 2003. Production, regulation and ecophysiology of periphyton in shallow freshwater lakes. PhD thesis. National Environmental Research Institute, Department of Freshwater Ecology, Faculty of Science, University of Aarhus, Denmark, 47 p. [Google Scholar]
  • Liboriussen L., Jeppesen E., Bramm M.E. and Lassen M.F., 2005. Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Aquat. Ecol., 39, 23–39. [CrossRef] [Google Scholar]
  • MacArthur R.H. and Wilson E.O., 1963. An equilibrium theory of insular zoogeography. Evolution, 17, 373–387. [CrossRef] [Google Scholar]
  • Meerhoff M., 2006. The structuring role of macrophytes on trophic dynamics in shallow lakes under a climate-warming scenario. PhD thesis. Faculty of Science, University of Aarhus, Denmark. [Google Scholar]
  • Mihaljević M. and Stević F., 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat. Ecol., 45, 335–349. [CrossRef] [Google Scholar]
  • Mihaljević M. and Žuna Pfeiffer T., 2012. Colonization of periphyton algae in a temperate floodplain lake under a fluctuating spring hydrological regime. Fundam. Appl. Limnol., 180, 13–25. [Google Scholar]
  • Mihaljević M., Getz D., Tadić Z., Živanović B., Gucunski D., Topić J., Kalinović I. and Mikuska J., 1999. Kopački Rit – Research Survey and Bibliography, Croatian Academy of Arts and Sciences, Zagreb, 188 p. [Google Scholar]
  • Mihaljević M., Stević F., Horvatić J. and Hackenberger Kutuzović B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia, 618, 77–88. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Morin S., Pesce S., Tlili A., Coste M. and Montuelle B., 2010. Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol. Indic., 10, 419–426. [CrossRef] [Google Scholar]
  • Murakami E.A., Bicudo D.C. and Rodrigues L., 2009. Periphytic algae of the Garças Lake, Upper Paraná River floodplain: comparing the years 1994 and 2004. Braz. J. Biol., 69, 459–468. [CrossRef] [PubMed] [Google Scholar]
  • Rodrigues L. and Bicudo D.C., 2001. Similarity among periphyton algal communities in a lentic-lotic gradient of the upper Paraná river floodplain, Brazil. Revta Brasil. Bot., 24, 235–248. [CrossRef] [Google Scholar]
  • Sekar R., Venugopalan V.P., Nandakumar K., Nair K.V.K. and Rao V.N.R., 2004. Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia, 512, 97–108. [CrossRef] [Google Scholar]
  • Stenger-Kovács C., Padisák J. and Bíró P., 2006. Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationship to chemical and hydrological features of the Torna-stream, Hungary. In 6th Int. Symposium on Use of algae for monitoring rivers. Hungary, Balatonfüred. [Google Scholar]
  • Stilinović B. and Plenković-Moraj A., 1995. Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Period. Biol., 97, 351–358. [Google Scholar]
  • Szabó K.E., Makk J., Kiss K.T., Eiler A., Ács Ė., Tóth B., Kiss Á.K. and Bertilsson S., 2008. Sequential colonization of river periphyton analysed by microscopy and molecular fingerprinting. Freshwat. Biol., 53, 1359–1371. [CrossRef] [Google Scholar]
  • Tockner K., Malard F. and Ward J.V., 2000. An extension of the flood pulse concept. Hydrol. Process., 14, 2861–2883. [CrossRef] [Google Scholar]
  • Toet S., Hersbach L. and Verhoeven J.T.A., 2003. Periphyton biomass and nutrient dynamics in a treatment wetland in relation to substratum, hydraulic retention time and nutrient removal. Arch. Hydrobiol. Suppl., 139, 361–392. [Google Scholar]
  • Ward J.V. and Stanford J.A., 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul. Rivers Res. Manage., 11, 105–119. [CrossRef] [Google Scholar]
  • Zohary T., Fishbein T., Kaplan B. and Pollingher U., 1998. Phytoplankton-metaphyton seasonal dynamics in a newly-created subtropical wetland lake. Wet. Ecol. Manag., 6, 133–142. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.