Free Access
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 3, 2013
Page(s) 169 - 177
Published online 14 August 2013
  • Acreman M.C. and Ferguson J.D., 2010. Environmental flows and European Water Framework Directive. Freshwat. Biol., 55, 32–48. [CrossRef]
  • Allan J.D. and Russek E., 1985. The quantification of stream drift. Can. J. Fish. Aquat. Sci., 42, 210–215. [CrossRef]
  • American Public Health Association – APHA, 1992. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington.
  • Armitage P.D., 1978. Downstream changes in the composition, numbers and biomass of bottom fauna in the Tees River, below Cow Green Reservoir and in an unregulated tributary Maize Beck, in the first five years after impoundment. Hydrobiologia, 58, 145–156. [CrossRef]
  • Brittain J.E. and Eikeland T.J., 1988. Invertebrate drift – a review. Hydrobiologia, 166, 77–93. [CrossRef]
  • Bruno M.C., Maiolini B., Carolli M. and Silveri L., 2009. Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Ann. Limnol. - Int. J. Lim., 45, 157–170. [CrossRef] [EDP Sciences]
  • Bruno M.C., Siviglia A., Carolli M. and Maiolini B., 2012. Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrol., in press. doi: 10.1002/eco.1275.
  • Bunn S.E. and Arthington A.H., 2002. Basis principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage., 30, 492–507. [CrossRef] [PubMed]
  • Callisto M. and Goulart M., 2005. Invertebrate drift along a longitudinal gradient in a Neotropical stream in Serra do Cipó National Park, Brazil. Hydrobiologia, 539, 47–56. [CrossRef]
  • Céréghino R., Cugny P. and Lavandier P., 2002. Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int. Rev. Hydrobiol., 87, 47–60. [CrossRef]
  • Clarke K.R. and Warwick R.M., 2001. Change in Marine Communities an Approach to Statistical Analysis and Interpretation (2nd edn), Primer-e Ltd., Plymouth Marine Laboratory, UK, 172 p.
  • Cowell B.C. and Carew W.C., 1976. Seasonal and diel periodicity in the drift of aquatic insects in a subtropical Florida stream. Freshwat. Biol., 6, 587–594. [CrossRef]
  • Elliott J.M., 1968. The life histories and drifting of Trichoptera in a Dartmoor stream. J. Anim. Ecol., 37, 615–625. [CrossRef]
  • Figueredo C.C. and Giani A., 2001. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia, 445, 165–174. [CrossRef]
  • Flecker A.S., 1992. Fish predation and the evolution of invertebrate drift periodicity: evidence from Neotropical streams. Ecology, 73, 438–448. [CrossRef]
  • Hamada N., McCreadie J.W. and Adler P.H., 2002. Species richness and spatial distribution of blackflies (Diptera: Simuliidae) in streams of Central Amazonia, Brazil. Freshwat. Biol., 47, 31–40. [CrossRef]
  • Hansen E.A. and Closs G.P., 2007. Temporal consistency in the long-term spatial distribution of macroinvertebrate drift along a stream reach. Hydrobiologia, 575, 361–371. [CrossRef]
  • Hildebrand S.G., 1974. The relation of drift to benthos density and food level in an artificial stream. Limnol. Oceaonogr., 19, 951–957. [CrossRef]
  • Huhta A., Muotka T. and Tikkanen P., 2000. Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism. Freshwat. Biol., 45, 33–42. [CrossRef]
  • Jacobsen D. and Bojsen B., 2002. Macroinvertebrate drift in Amazon streams in relation to riparian forest cover and fish fauna. Arch. Hidrobiol., 155, 177–197.
  • Jones N.E., 2013. The dual nature of hydropeaking rivers: is ecopeaking possible? River Res. Applic., in press. doi: 10.1002/rra.2653.
  • Lauters F., Lavandier P., Lim P., Sabaton C. and Belaud A., 1996. Influence of hydropeaking on invertebrates and their relationship with fish feeding habits in a Pyrenean River. Regul. River., 12, 563–573. [CrossRef]
  • Lobón-Cerviá J., Rezende C.F. and Castellanos C., 2012. High species diversity and low density typify drift and benthos composition in Neotropical streams. Fund. Appl. Limnol., 181, 129–142. [CrossRef]
  • McIntosh A.R., Peckarsky B.L. and Taylor B.W., 2002. The influence of predatory fish on mayfly drift: extrapolating from experiments to nature. Freshwat. Biol., 47, 1497–1513. [CrossRef]
  • Merritt R.W. and Cummins K.W., 1996. An Introduction to the Aquatic Insects of North America. Kendall Hunt, Iowa, 862 p.
  • Mugnai R., Nessimian J.L. and Baptista D.F., 2010. Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro, Technical Books, Rio de Janeiro, Brazil, 173 p.
  • Naliato D.A.O., Nogueira M.G. and Perbiche-Neves G., 2009. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: a case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag., 14, 301–314. [CrossRef]
  • Pérez G.R., 1988. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia, Universidad de Antioquia, Bogotá, 217 p.
  • Poff N.L. and Ward J., 1991. Drift responses of benthic invertebrates to experimental streamflow variation in a hydrologically stable stream. Can. J. Fish. Aquat. Sci., 48, 1926–1936. [CrossRef]
  • Poff N.L. and Zimmerman J.K.H., 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwat. Biol., 55, 194–205. [CrossRef]
  • Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D., Sparks R.E. and Stromberg J.C., 1997. The Natural Flow Regime. A paradigm for river conservation and restoration. BioScience, 47, 769–784. [CrossRef]
  • Pompeu P.S., Reis L.S., Gandini C.V., Souza R.C.R. and Favero J.M., 2009. The ichthyofauna of upper rio Capivari: defining conservation strategies based on the composition and distribution of fish species. Neotrop. Ichthyol., 7, 659–666. [CrossRef]
  • Ramírez A. and Pringle C.M., 1998. Invertebrate drift and benthic community dynamics in a lowland tropical stream,Costa Rica. Hydrobiologia, 386, 19–26. [CrossRef]
  • Ramírez A. and Pringle C.M., 2001. Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape. Freshwat. Biol., 46, 47–62.
  • Ríos-Touma B., Prat N. and Encalada A.C., 2012. Invertebrate drift and colonization processes in a tropical Andean stream. Aquat. Biol., 14, 233–246. [CrossRef]
  • Schreiber E.S.G., 1995. Long-term patterns of invertebrate stream drift in an Australian temperate stream. Freshwat. Biol., 33, 13–25. [CrossRef]
  • Smokorowski K.E., Metcalfe R.A., Finucan S.D., Jones N., Marty J., Power M., Pyrce R.S. and Steele R., 2011. Ecosystem level assessment of environmentally based flow restrictions for maintaining ecosystem integrity: a comparison of a modified peaking versus unaltered river. Ecohydrology, 4, 791–806. [CrossRef]
  • Straskraba M., 1999. Retention time as a key variable of reservoir limnology. In: Tundisi J.G. and Straskraba M. (eds), Theoretical Reservoir Ecology and its Applications, Brazilian Academy of Sciences, São Carlos, 385–410.
  • Troelstrup N.H. and Hergenrader G.L., 1990. Effect of hydropower peaking flow fluctuations on community structure and feeding guilds of invertebrates colonizing artificial substrates in a large impounded river. Hydrobiologia, 199, 217–228. [CrossRef]
  • Waters T.F., 1972. Drift of stream insects. Annu. Rev. Entomol., 17, 253–272. [CrossRef]
  • Zar J.H., 1996. Biostatistical Analysis, Prentice–Hall, New Jersey, 662 p.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.