Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 3, 2013
Page(s) 157 - 168
DOI https://doi.org/10.1051/limn/2013049
Published online 08 August 2013
  • Annan A.P., 2005. Ground penetrating radar. In: Butler K. (ed.), Near Surface Geophysics, Society of Exploration Geophysicists, Tulsa, 357–438. [CrossRef] [Google Scholar]
  • Annan A.P. and Davis J.L., 1992. Design and development of a digital ground penetrating radar system. In: Pilon J. (ed.), Ground Penetrating Radar, Geological Survey of Canada Special Paper, Vol. 90 (4), Canada Communication Group, Ottawa, 15–23. [Google Scholar]
  • Arcone S.A., Peapples P.R. and Liu L., 2003. Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide. Geophysics, 68, 1922–1933. [CrossRef] [Google Scholar]
  • ASTM Standard D1587-08, 2007. ASTM D1587-08 Standard Practice for Thin-Walled Tube Sampling of Soil for Geotechnical Purposes, ASTM International, West Conshohocken, PA. [Google Scholar]
  • Ballard R.D., Stager L.E., Master D., Yoerger D., Mindell D., Whitcomb L.L., Singh H. and Piechota D., 2002. Iron Age shipwrecks in deep water off Ashkelon, Israel. Am. J. Archaeol., 106, 151–168. [Google Scholar]
  • Barko J.W., Gunnison D. and Carpenter S.R., 1991. Sediment interaction with submersed macrophyte growth and community dynamics. Aquat. Biol., 41, 41–65. [Google Scholar]
  • Breukelaar A.W., Lammens E.H.R.R., Breteler J.G.P.K. and Tatrai I., 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biol., 32, 113–121. [Google Scholar]
  • Burger H.R., Sheehan A.F. and Jones C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface, W. W. Norton & Company, New York, 554 p. [Google Scholar]
  • Cahoon W.G., 1953. Commercial carp removal at Lake Mattamuskeet, North Carolina. J. Wildlife Manage., 17, 312–317. [Google Scholar]
  • Campbell Scientific Inc., 2011. OBS-3A Turbidity and Temperature Monitoring System-Operator's Manual, Campbell Scientific Inc., Logan, 58 p. [Google Scholar]
  • Cheng N.S., 1997. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng., 123, 149–152. [Google Scholar]
  • Crivelli A.J., 1983. The destruction of aquatic vegetation by carp. A comparison between Southern France and the United States. Hydrobiologia, 106, 3741. [CrossRef] [Google Scholar]
  • Cronin G., William M.L. Jr. and Schiehser M.A., 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat. Bot., 85, 37–43. [CrossRef] [Google Scholar]
  • Damuth J.E., 1980. Use of high-frequency (3.5 kHz–12 kHz) echograms in the study of near-bottom sedimentation processes in the deep-sea: a review. Mar. Geol., 38, 51–75. [CrossRef] [Google Scholar]
  • Fonseca M., 1996. The role of seagrasses in nearshore sedimentary processes: a review. In: Nordstrom K. and Roman C.T. (eds.), Estuarine Shore: Evolution, Environments and Human Alternations, John Wiley & Sons, London, 261–286. [Google Scholar]
  • Garcia G.A., Garcia-Gil S. and Vilas F., 2004. Echo characters and recent sedimentary processes as indicted by high-resolution sub-bottom profiling in Ria de Vigo, NW Spain. Geo. Mar. Lett., 24, 32–45. [CrossRef] [Google Scholar]
  • Hamilton D.P. and Mitchell S.F., 1997. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia, 317, 209–220. [CrossRef] [Google Scholar]
  • Havens K.E., 1991. Fish-induced sediment resuspension: effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J. Plankton Res., 13, 1163–1176. [CrossRef] [Google Scholar]
  • Huvenne V.A.I., Blondel P.H. and Henriet J.-P., 2002. Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar. Geol., 189, 323–341. [CrossRef] [Google Scholar]
  • James W.F. and Barko J.W., 1991. Influences of submersed aquatic macrophytes on zonation of sediment accretion and composition, Eau Galle Reservoir, Wisconsin. Technical Reports A-91-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 23 p. [Google Scholar]
  • James W.F. and Barko J.W., 1994. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake Reserv. Manage., 10, 95–102. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Kristensen P., Søndergaard M., Mortensen E., Sortkjaer O. and Olrik K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperature lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227. [CrossRef] [Google Scholar]
  • Jeppesen E., Søndergaard M. and Christoffersen K. (eds.), 1998. The Structuring Role of Submerged Macrophytes in Lakes, Ecological Series, Vol. 131, Springer–Verlag, New York, 423 p. [CrossRef] [Google Scholar]
  • Jones J.J., Collins A.L., Naden P.S. and Sear D.A., 2012. The relationship between fine sediment and macrophyte in rivers. River Res. Appl., 28, 1006–1018. [CrossRef] [Google Scholar]
  • King D.R. and Hunt G.S., 1967. Effect of carp on vegetation in a Lake Erie marsh. J. Wildlife Manage., 31, 181–188. [Google Scholar]
  • Koch E.W., 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24, 1–17. [CrossRef] [Google Scholar]
  • Lee C., Wu C.H. and Hoopes J.A., 2004. Automated sediment erosion testing system using digital imaging. J. Hydraul. Eng., 130, 771–782. [CrossRef] [Google Scholar]
  • Lin Y.T., Schuettpelz C.C., Wu C.H. and Fratta D., 2009. A combined acoustic and electromagnetic wave-based techniques for bathymetry and subbottom profiling in shallow waters. J. Appl. Geophys., 68, 203–218. [CrossRef] [Google Scholar]
  • Lin Y.T., Wu C.H., Fratta D. and Kung K.-J.S., 2010. Integrated acoustic and electromagnetic wave-based technique to estimate subbottom sediment properties. Near Surf. Geophys., 8, 213–221. [Google Scholar]
  • Losee R.F. and Wetzel R.G., 1993. Littoral flow rates within and around submersed macrophyte communities. Freshwater Biol., 29, 7–17. [CrossRef] [Google Scholar]
  • Lougheed V.L., Crosbie B. and Chow-Fraser P., 1988. Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Can. J. Fish. Aquat. Sci., 55, 1189–1197. [CrossRef] [Google Scholar]
  • Maceina M.J. and Shireman J.V., 1980. The use of a recording fathometer for determination of distribution and biomass of hydrilla. J. Aquat. Plant Manage., 18, 34–39. [Google Scholar]
  • Madsen J.D. and Warnke E., 1983. Velocities of currents around and within submerged aquatic vegetation. Arch. Hydrobiol., 97, 389–394. [Google Scholar]
  • Madsen J.D., Chambers P.A., James W.F., Koch E.W. and Westlake D.F., 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71–84. [CrossRef] [Google Scholar]
  • Matsuzaki S.S., Usio N., Takamura N. and Washitani I., 2007. Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation. Fund. Appl. Limnol., 168, 27–38. [Google Scholar]
  • McNeil J., Taylor C. and Lick W., 1996. Measurements of erosion of undisturbed bottom sediments with depth. J. Hydraul. Eng., 122, 316–324. [Google Scholar]
  • Mehta A.J. and Parchure T.M., 2000. Surface erosion of fine-grained sediment revisited. In: Flemming B.W., Delafontaine M.T. and Liebezeit G. (eds.), Muddy coast dynamics and resource management, Elsevier, Amsterdam, 55–74. [CrossRef] [Google Scholar]
  • Miller S.A. and Crowl T.A., 2006. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biol., 51, 85–94. [CrossRef] [Google Scholar]
  • Morang A., Larson R. and Gorman L., 1997. Monitoring the coastal environment; Part III: geophysical and research methods. J. Coastal Res., 13, 1064–1085. [Google Scholar]
  • Nepf H.M., 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res., 35, 479–489. [Google Scholar]
  • Nepf H., Ghisalberti M., White B. and Murph E., 2007. Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res, 43, W04422. [Google Scholar]
  • Nitsche F.O., Bell R., Carbotte S.M., Ryan W.B.E. and Flood R., 2004. Process-related classification of acoustic data from the Hudson River Estuary. Mar. Geol., 209, 131–145. [CrossRef] [Google Scholar]
  • Petticrew E.L. and Kalff J., 1992. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci., 49, 2483–2489. [CrossRef] [Google Scholar]
  • Roberts J., Chick A., Oswald L. and Thomoson P., 1995. Effect of carp, Cyprinus carpio L., an exotic benthivorous fish, on aquatic plants and water quality in experimental ponds. Mar. Freshwater Res., 46, 1171–1180. [CrossRef] [Google Scholar]
  • Sabol B.M., Melton R.E. and Chamberlain R. Jr., Doeing P. and Haunert K., 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries, 25, 133–141. [CrossRef] [Google Scholar]
  • Sambuelli L. and Bava S., 2012. Case study: a GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization. J. Appl. Geophys., 81, 48–56. [CrossRef] [Google Scholar]
  • Sand-Jensen K., 1998. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biol., 39, 663–679. [CrossRef] [Google Scholar]
  • Santamarina J.C., Rinaldi V.A., Fratta D., Klein K.A., Wang Y.H., Cho G.C., Cascante G., 2005. A survey of elastic and electromagnetic properties of near-surface soil. In: Butler K. (ed.), Near Surface Geophysics, Society of Exploration Geophysicists, Tulsa, 71–87. [CrossRef] [Google Scholar]
  • Scheffer M., Hosper S.H., Meijer M.L., Moss B. and Jeppesen E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275–279. [Google Scholar]
  • Scheffer M., Rinaldi S., Gragnani A., Mur L.R. and VanNes E.H., 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology, 78, 272–282. [CrossRef] [Google Scholar]
  • Schrage L.J. and Downing J.A., 2004. Pathways of increased water clarity after fish removal from Ventura Marsh: a shallow, eutrophic wetland. Hydrobiologia, 511, 215–231. [CrossRef] [Google Scholar]
  • Sellmann P.V., Delaney A.J., Arcone S.A., 1992. Sub-bottom surveying in lakes with ground-penetrating radar. CRREL Report 92-8, U.S. Army Engineering Cold Regions Research and Engineering Laboratory, Hanover, NH. [Google Scholar]
  • Shawab W.C., Rodrigues R.W., Danforth W.W. and Gowen M.H., 1996. Sediment distribution on a storm-dominated insular shelf, Luquillo, Puerto Rico, U.S.A. J. Coastal Res., 12, 147–159. [Google Scholar]
  • Trebitz A.S., Nichols S.A., Carpenter S.R. and Lathrop R.C., 1993. Patterns of vegetation change in Lake Wingra following a Myriophyllum spicatum declie. Aquat. Bot., 46, 325–340. [CrossRef] [Google Scholar]
  • Wenta R., Sorsa K., Hyland G. and Schneider T., 2009. City of Madison Road Salt Report 2008–2009. Public Health Madison – Dane County. Available online at: http://www. cityofmadison.com/engineering/stormwater/documents/RoadSalt2009.pdf. [Google Scholar]
  • Wilkens R.H. and Richardson M.D., 1998. The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernforde Bay, Baltic Sea. Cont. Shelf Res., 18, 1859–1892. [CrossRef] [Google Scholar]
  • Zambrano L., Scheffer M. and Martinez-Ramos M., 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos, 94, 344–350. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.