Editor's Choice
Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 3, 2013
Page(s) 191 - 197
DOI https://doi.org/10.1051/limn/2013055
Published online 14 August 2013
  • APHA, AWWA, WEF, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn, APHA, AWWA, WEF, Washington, DC. [Google Scholar]
  • Astrom M., Aaltonen E.K. and Koivusaari J., 2004. Changes in leaching patterns of nitrogen and phosphorus after artificial drainage of a boreal forest – a paired catchment study in Lappajarvi, Western Finland. Boreal Env. Res., 10, 67–78. [Google Scholar]
  • Cronan C.S. and Aiken G.R., 1985. Chemistry and transport of soluble humic substances in forested watersheds of Adirondack Park, New York. Geochim. Cosmochim. Acta, 49, 1697–1705. [CrossRef] [Google Scholar]
  • Czarnecka H., 1976. Attempt to outflow calculations in small uncontrolled drainage basins on the basis of the soil cover. Gosp. Wod., 8–9, 225–230 (in Polish). [Google Scholar]
  • Fitzhugh R.D., Driscoll C.T., Groffman P.M., Tierney G.L., Fahey T.J. and Hardy J.P., 2001. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56, 215–238. [CrossRef] [Google Scholar]
  • Grunditz C. and Dalhammar G., 2001. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Res., 35, 443–440. [CrossRef] [Google Scholar]
  • Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B. and Zerbe J., 1999. The Physical-Chemical Analyses of Water and Wastewater. Arkady Press, Warsaw. [Google Scholar]
  • Hessen D.O., 1992. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia, 229, 115–123. [CrossRef] [Google Scholar]
  • Hirobe M., Sabang J., Bhatta B.K. and Takeda H., 2004. Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: dynamics of carbon, nutrients, and organic constituents. J. Forest Res., 9, 347–354. [CrossRef] [Google Scholar]
  • Hongve D., 1999. Production of dissolved organic carbon in forested catchments. J. Hydrol., 224, 91–99. [CrossRef] [Google Scholar]
  • Irfanullah H.M., 2009. On the role of forested catchment in acid lake limnology. Turk. J. Fish. Aquatic Sci., 9, 227–230. [Google Scholar]
  • Jones R.I., 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia, 229, 73–91. [CrossRef] [Google Scholar]
  • Klimaszyk P., 2006. Peatbog – humic water complex in forest landscape: factors determining its functioning. Pol. J. Environ. Stud., 15, 384–388. [Google Scholar]
  • Klimaszyk P. and Rzymski P., 2011. Surface runoff as a factor determining trophic state of midforest lake (Piaseczno Małe, North Poland). Pol. J. Environ. Stud., 5, 1203–1210. [Google Scholar]
  • Lewis W.M., Melack J.M., Mcdowell W.H., Mcclain M. and Richney J.E., 1999. Nitrogen yields from undisturbed watersheds in the America. Biogeochemistry, 46, 149–162. [Google Scholar]
  • Niemrycz E., Taylor R. and Makowski Z., 1993. Endangere of Fresh Waters, Biblioteka Monitoringu Środowiska, Warsaw. [Google Scholar]
  • Park J. and Matzner E., 2003. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry, 66, 265–286. [CrossRef] [Google Scholar]
  • Park S-R., Lee H-J., Lee S-W., Hwang S-J., Byeon M-S., Joo G-J., Jeong K-S., Kong D-S. and Kim M-C., 2011. Relationships between land use and multi-dimensional characteristics of streams and rivers at two different scales. Int. J. Limnol., 47, 107–116. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pensa M., Jalkanen R. and Liblik V., 2007. Variation in Scots pine needle longevity and nutrient conservation in different habitats and latitudes. Can. J. Forest Res., 37, 1599–1604. [CrossRef] [Google Scholar]
  • Rorke B.B., 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology, 32, 385–415. [CrossRef] [Google Scholar]
  • Schulze I.-M., Bolte A., Schmidt W. and Eichhorn J., 2009. Phytomass, litter and net primary production of herbaceous layer. In: Brumme R. and Khanna P.K. (eds.), Functioning and Management of European Beech Ecosystems, Springer-Verlag, Berlin, 155–181. [CrossRef] [Google Scholar]
  • Sickman J.O., Leydecker A., Chang C.C.Y., Kendall C., Melack J.M., Lucero D.M. and Schimel J., 2003. Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry, 64, 1–24. [CrossRef] [Google Scholar]
  • Sobek S. and Tranvik L.J., 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr., 52, 1208–1219. [CrossRef] [Google Scholar]
  • Steinberg C.E.W., 2003. Ecology of Humic Substances in Freshwaters, Springer, Berlin. [Google Scholar]
  • Strobel B.W., Hansen H.C.B., Borggaard O.K., Andersen M.K. and Raulund-Rasmussen K., 2001. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry, 56, 1–26. [CrossRef] [Google Scholar]
  • Vuornenmaa J., Rekolainen S., Lepisto A., Kenttamies K. and Kaupilla P., 2002. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s. Environ. Monit. Assess., 76, 213–248. [CrossRef] [PubMed] [Google Scholar]
  • Wilpiszewska I., 1990. Productivity and chemical valorization of mire vegetation in postglacial agriculutral landscape. Ekologia Polska, 38, 3–72. [Google Scholar]
  • Woś A., 1994. The Wielkopolska Lowland Climate, Wydawnictwo Naukowe UAM, Poznań. [Google Scholar]
  • Zieliński P., Górniak A. and Choroszewska K., 1999. Changes in water quality induced by the decomposition of plant detritus. Acta Hydrobiol., 41, 119–126. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.