Free Access
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 2, 2013
Page(s) 97 - 106
Published online 22 May 2013
  • Alfonso M.T., 1996. Estudio de las comunidades zooplanctónicas de los ecosistemas acuáticos del Parque Natural de la Albufera de Valencia. Dissertation, University of Valencia, Valencia, 310 p. [Google Scholar]
  • Alonso M., 1996. Crustacea. Branchiopoda. Fauna Ibérica, Vol. 7, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 486 p. [Google Scholar]
  • Antón-Pardo M. and Armengol X., 2010. Zooplankton community from restored peridunal ponds in the Mediterranean region (L'Albufera Natural Park, Valencia, Spain). Limnetica, 29, 133–144. [Google Scholar]
  • Azémar F., Maris T., Mialet B., Segers H., Van Damme S., Meire P. and Tackx M., 2010. Rotifers in the Schelde estuary (Belgium): a test of taxonomic relevance. J. Plankton Res., 32, 981–997. [Google Scholar]
  • Badosa A., Frisch D., Arechederra A., Serrano L. and Green A.J., 2010. Recovery of zooplankton diversity in a restored Mediterranean temporary marsh in Doñana National Park (SW Spain). Hydrobiologia, 654, 67–82. [CrossRef] [Google Scholar]
  • Brady V.J., Cardinale B.J., Gathman J.P. and Burton T.M., 2002. Does facilitation of faunal recruitment benefit ecosystem restoration? An experimental sudy of invertebrate assemblages in wetland mesocosms. Restor. Ecol., 10, 617–626. [Google Scholar]
  • Brendonck L. and De Meester L., 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia, 491, 65–84. [CrossRef] [Google Scholar]
  • Brouwer E. and Roelofs J.G.M., 2001. Degraded softwater lakes: possibilities for restoration. Restor. Ecol., 9, 155–166. [Google Scholar]
  • Caceres C.E. and Soluk D.A., 2002. Blowing in the wind: a field test to overland dispersal and colonization by aquatic invertebrates. Oecologia, 131, 402–408. [CrossRef] [PubMed] [Google Scholar]
  • Canfield D.E. Jr., Langeland K.A., Maceina M.J., Haller W.T., Shireman J.V. and. Jones J.R., 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. Aquat. Sci., 40, 1713–1718. [Google Scholar]
  • Crosetti D. and Margaritora F.G., 1987. Distribution and life cycles of cladocerans in temporary pools fromCentral Italy. Freshwat. Biol., 18, 165–175. [Google Scholar]
  • Drake D.C. and Naiman R.J., 2000. An evaluation of restoration efforts in fishless lakes stocked with exotic trout. Conserv. Biol., 14, 1807–1820. [Google Scholar]
  • Duggan I.C., 2001. The ecology of periphytic rotifers. Hydrobiologia, 446/447, 139–148. [CrossRef] [Google Scholar]
  • Dussart B., 1969. Les copépodes des eaux continentales d'Europe occidentale, Tome II : Cyclopoïdes et Biologie, Boubee & Cie, Paris, 292 p. [Google Scholar]
  • Figuerola J. and Green A.J., 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwat. Biol., 47, 483–494. [Google Scholar]
  • Frisch D. and Green A.J., 2007. Copepods come in first: rapid colonization of new temporary ponds. Fundam. Appl. Limnol., 168, 289–297. [Google Scholar]
  • Grillas P., Gauthier P., Yavercovski N. and Perennou C., 2004. Mediterranean Temporary Pools, Vol. 1, Issues relating to conservation, functioning and management, Tour du Valat, France, 119 p. [Google Scholar]
  • Hammer O., Harper D.A.T. and Ryan P.D., 2008. PAST–Palaentological Statistics, ver. 1.81, Sweden, 88 p. [Google Scholar]
  • Havel J.E. and Shurin J.B., 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol. Oceanogr., 49, 1229–1238. [Google Scholar]
  • Hobbs R.J. and Harris J.A., 2001. Restoration ecology: repairing the Earth's ecosystems in the new millennium. Restor. Ecol., 9, 239–246. [Google Scholar]
  • Jeffrey E. and Humphrey G.F., 1975. New spectrophotometric equations for determining chlorophylla a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167, 91–194. [Google Scholar]
  • Jenkins K.M. and Boulton A.J., 2007. Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrates responses to reduced floodplain inundation. J. Appl. Ecol., 44, 823–832. [Google Scholar]
  • Jeppesen E., Jensen J.P., Kristensen P., Sondergaard M., Mortensen E., Sortkaer O. and Olrik K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227. [CrossRef] [Google Scholar]
  • Jeppesen E., Noges P., Davidson T.A., Haberman J., Noges T., Blank K., Laridsen T.L., Sondergaard M., Sayer C., Laugaste R., Johansson L.S., Bjerring R. and Amsink S.L., 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676, 279–297. [CrossRef] [Google Scholar]
  • Keller W. and Yan N.D., 1998. Biological recovery from lake acidification: zooplankton communities as a model of patterns and processes. Restor. Ecol., 6, 364–375. [Google Scholar]
  • Koste W., 1978. Rotatoria. Die Räderiere Mitteleuropas, Monogonta, Gebrüder Borntraeger, Berlin, 673 p. [Google Scholar]
  • Kuczynska-Kippen N., 2001. Diurnal vertical distribution of rotifers (Rotifera) in the Chara zone of Budzyńskie Lake, Poland. Hydrobiologia, 446, 195–201. [CrossRef] [Google Scholar]
  • Louette G., Declerk S., Vandekerkhove J. and De Meester L., 2009. Evaluation of restoration measures in a shallow lake through a comparison of present day zooplankton communities with historical samples. Restor. Ecol., 17, 629–640. [Google Scholar]
  • Mialet B., Gouzou J., Azémar F., Maris T., Sossou C., Toumi N., Van Damme S., Meire P. and Tackx M., 2011. Response of zooplankton to improving water quality in the Scheldt estuary (Belgium). Estuar. Coastal Shelf Sci., 93, 47–57. [Google Scholar]
  • Moss B., Stasfield J., Irvine K., Perrow M. and Phillips G., 1996. Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J. Appl. Ecol., 33, 71–86. [Google Scholar]
  • Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B. and Kent J., 2000. Biodiversity hotspots for consevation priorities. Nature, 403, 853–858. [CrossRef] [PubMed] [Google Scholar]
  • Olmo C., Armengol X. and Ortells R., 2012. Re-establishment of zooplankton communities in temporary ponds after autumn flooding: does restoration age matter? Limnologica, 42, 310–319. [CrossRef] [Google Scholar]
  • Ortells R., Olmo C. and Armengol X., 2012. Colonization in action: genetic characteristics of Daphnia magna Strauss (Crustacea, Anomopoda) in two recently restored ponds. Hydrobiologia, 689, 37–49. [CrossRef] [Google Scholar]
  • Pearce F. and Crivelli A.J., 1994. Characteristics of Mediterranean Wetlands, Tour du Valat, France, 90 p. [Google Scholar]
  • Rennie M.D. and Jackson L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aquat. Sci., 62, 2088–2099. [Google Scholar]
  • Ruiz-Jaen M.C. and Aide T.M., 2005. Restoration success: how is it being measured? Restor. Ecol., 13, 569–577. [Google Scholar]
  • Scheffer M., 2004. Ecology of Shallow Lakes, Kluwer Academic Publishers, The Netherlands, 357 p. [Google Scholar]
  • Scheffer M., Hosper S.H., Meijer M.L., Moss B. and Jeppesen E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275–279. [Google Scholar]
  • Soria J.M. and Alfonso M.T., 1993. Relations between physico-chemical and biological characteristics in some coastal intradune ponds near Valencia (Spain). Verh. Int. Ver. Theor. Angew. Limnol., 25, 1009–1013. [Google Scholar]
  • Soria García J.M., 1988. Estudio limnológico de las malladas de la Devesa de la Albufera, Technical report, Ayuntamiento de Valencia, Oficina Técnica Devesa y Albufera, Valencia, 95 p. [Google Scholar]
  • Vandekerkhove J., Declerck S., Brendonck L., Conde Porcuna J.M., Jeppesen E. and De Meester L., 2005. Hatching of cladoceran resting stages: temperature and photoperiod. Freshwat. Biol., 50, 96–104. [Google Scholar]
  • Vanschoenwinkel B., Waterkeyn A., Vandecaetsbeek T., Pineau O., Grillas P. and Brendock L., 2008a. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwat. Biol., 53, 2264–2273. [Google Scholar]
  • Vanschoenwinkel B., Gielen S., Seaman M. and Brendonck L., 2008b. Anyway the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos, 117, 125–134. [CrossRef] [Google Scholar]
  • Waterkeyn A., Vanschoenwinkel B., Elsen S., Anton-Pardo M., Grillas P. and Brendock L., 2010. Unintentional dispersal of aquatic invertebrates via footwear and motor vehicles in a Mediterranean wetland area. Aquat. Conserv.: Mar. Freshwat. Ecosyst., 20, 580–587. [Google Scholar]
  • Wetzel R.G., 2001. Limnology. Lake and River Ecosystems, Third edn, Elsevier Academic Press, USA, 1006 p. [Google Scholar]
  • Williams P., Whitfield M. and Biggs J., 2008. How can we make new ponds biodiverse? A case study monitored over 7 years. Hydrobiologia, 597, 137–148. [CrossRef] [Google Scholar]
  • Yan N.D., Girard R., Heneberry J.H., Keller W.B., Gunn J.M. and Dillon P.J., 2004. Recovery of copepod, but not cladoceran, zooplankton from severe and chronic effects of multiple stressors. Ecol. Lett., 7, 452–460. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.