Free Access
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 2, 2013
Page(s) 87 - 95
Published online 16 May 2013
  • AFNOR (Association française de normalisation; the French National Organization for quality regulations) 2000. Norme NFT 90- 325. Qualité de l'Eau. Evaluation de la genotoxicité au moyen de larves d'amphibien (Xenopus laevis, Pleurodeles waltl). ICS : 13.020.40 ; 13.060.70. Norme française homologuée, Septembre 2000, Paris: AFNOR. 17. [Google Scholar]
  • Baker M.A., Dahm C.N. and Valett H.M., 2000. Anoxia, anaerobic metabolism, and biogeochemistry of the stream-water–groundwater interface. In: Jones J.B. and Mulholland P.J. (eds.), Streams and Ground Waters, Academic Press, Boston, 259–283. [CrossRef] [Google Scholar]
  • Battin T.J., Kaplan L.A., Newbold J.D. and Hendricks S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biol., 48, 1–20. [CrossRef] [Google Scholar]
  • Baumgarten B., Jährig J., Reemtsma T. and Jekel M., 2011. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Res., 45, 211–220. [CrossRef] [PubMed] [Google Scholar]
  • Bogaerts P., Bohatier J., Bonnemoy F., Cuer A., Sancelme M., Tixier C., Twagilimana L. and Veschambre H., 2000. Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manage. Sci., 56, 455–462. [CrossRef] [Google Scholar]
  • Bonnemoy F., Cuer A., Sancelme M., Tixier C. and Veschambre H., 2001. Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity and biotransformation. Environ. Toxicol. Chem., 30, 1381–1389. [Google Scholar]
  • Boulton A.J., Findlay S., Marmonier P., Stanley E.H. and Valett H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 59–81. [Google Scholar]
  • Brugger A., Reitner B., Kolar I., Quéric N. and Herndl G.J., 2001. Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria. Freshwater Biol., 46, 997–1016. [CrossRef] [Google Scholar]
  • Brunke M. and Gonser T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 1–33. [CrossRef] [Google Scholar]
  • Devault D., Gerino M., Laplanche C., Julien F., Winterton P., Merlina G., Delmas F., Lim P., Sanchez Perez J.M. and Pinelli E., 2009. Herbicide accumulation and evolution in reservoir sediments. Sci. Total Environ., 407, 2659–2665. [CrossRef] [PubMed] [Google Scholar]
  • Everard M. and Powell A., 2002. Rivers as living systems. Aquatic Conserv. Mar. Freshw. Ecosyst., 12, 329–337. [Google Scholar]
  • Findlay S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol. Oceanogr., 40, 159–164. [CrossRef] [Google Scholar]
  • Furutani A., Rudd J.W.N. and Kelly C.A., 1984. A method for measuring the response of sediments microbial communities to environmental perturbations. Can. J. Microbiol., 30, 1408–1414. [CrossRef] [Google Scholar]
  • Gavrilescu M., 2005. Fate of pesticide in the environment and its bioremediation. Eng. Life Sci., 5, 497–526. [CrossRef] [Google Scholar]
  • Giesy J.P., Solomon K.R., Coats J.R., Dixon K.R., GiddingsJ.M. and Kenaga E.E., 1999. Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev. Environ. Contam. Toxicol., 160, 1–129. [CrossRef] [PubMed] [Google Scholar]
  • Gifford S., Hugh D. and O'Connor W., 2007. Aquatic zooremediation deploying animals to remediate contaminated aquatic environments. Trends Biotechnol., 25, 60–65. [CrossRef] [PubMed] [Google Scholar]
  • Gordeliy V.I., Keselev M.A., Lesieur P., Pole A.V. and Teixera J., 1998. Lipid membrane structure and interaction in DMSO/water mixtures. Biophys. J., 75, 2343–2351. [CrossRef] [PubMed] [Google Scholar]
  • Griebler C. and Slezak D., 2001. Microbial activity in aquatic environments measured by DMSO reduction and intercomparison with commonly used methods. Appl. Environ. Microbiol., 67, 100–109. [CrossRef] [PubMed] [Google Scholar]
  • Grimm N.B. and Fisher S.G., 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219–228. [CrossRef] [Google Scholar]
  • Gruenheid S., Amy G. and Jekel M., 2005. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res., 39, 3219–3228. [Google Scholar]
  • House W.A., Leach D.V. and Armitage P.D., 2001. Study dissolved silicon and nitrate dynamics in a freshwater stream. Water Res., 35, 2749–2757. [Google Scholar]
  • Hunter K.S., Wang Y. and Van Cappellen P., 1998. Kinetic modelling of microbially- driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Contam. Hydrol., 209, 53–80. [CrossRef] [Google Scholar]
  • Ifabiyi I.P., 2008. Self purification of a freshwater stream in Ile-Ife : lessons for water management. J. Hum. Ecol., 24, 131–137. [Google Scholar]
  • ISO, 2006. International Standard. Water quality – Evaluation of genotoxicity by measurement of the induction of micronuclei – Part 1: Evaluation of genotoxicity using amphibian larvae. ISO 21427-1, ICS: 13.060.70, GENOVA – CH, Août 2006, 15. [Google Scholar]
  • Janauer G.A., 2000. Ecohydrology : fusing concepts and scales. Ecol. Eng., 16, 9–16. [CrossRef] [Google Scholar]
  • Jekel M. and Gruenheid S., 2005. Bank filtration and groundwater recharge for treatment of polluted surface waters. Water Sci. Technol.: Water Supply, 5, 57–66. [Google Scholar]
  • Landmeyer J.E., Bradley P.M., Trego D.A., Hale K.G. and Haas J.E., 2010. MTBE, TBA, and TAME attenuation in diverse hyporheic zones. Ground Water, 48, 30–41. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre S., Marmonier P. and Peiry J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Ann. Limnol. - Int. J. Lim., 42, 43–52. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lewandowski J., Putschew A., Schweisg D., Neumann C. and Radke M., 2011. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Sci. Total Environ., 409, 1824–1835. [CrossRef] [PubMed] [Google Scholar]
  • Marmonier P., Archambaud G., Belaidi N., Bougon N., Breil P., Chauvet E., Claret C., Cornut J., Datry T., Dole-Olivier M.-J., Dumont B., Flipo N., Foulquier A., Gérino M., Guilpart A., Julien F., Maazouzi C., Martin D., Mermillod-Blondin F., Montuelle B., Namour Ph., Navel S., Ombredane D., Pelte T., Piscart C., Pusch M., Stroffek S., Robertson A., Sánchez-Pérez J.M., Sauvage S., Taleb A., Wantzen M. and Vervier Ph., 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Ann. Limnol. - Int. J. Lim., 48, 253–266. [CrossRef] [EDP Sciences] [Google Scholar]
  • McGill R., Tuckey J. and Larsen W., 1978. Variations of box plots. Am. Statist., 32, 12–16. [Google Scholar]
  • Mermillod-Blondin F., Gaudet J.P., Gerino M. and Creuze des Châtelliers M., 2003. Influence of macroinvertebrates on physico-chemical and microbial processes in the hyporheic sediments. Hydrol. Process., 17, 779–794. [CrossRef] [Google Scholar]
  • Mouchet F. and Gauthier L., 2013. Genotoxicity of contaminants: amphibian micronucleus assay. In: Férard J.F. and Blaise C. (eds.), Comprehensive Handbook (or Practical Guide) of Ecotoxicological Terms, Springer Publishers, Dordrecht, The Netherlands. in press. [Google Scholar]
  • Navel S., Sauvage S., Delmotte S., Gerino M., Marmonier P. and Mermillod-Blondin F., 2012. A modelling approach to quantify the influence of fine sediment deposition on biogeochemical processes occurring in the hyporheic zone. Ann. Limnol. - Int. J. Lim., 48, 279–287. [CrossRef] [EDP Sciences] [Google Scholar]
  • Nieuwkoop D. and Faber J., 1956. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis, North-Holland Publishing Company (Amsterdam), 243. [Google Scholar]
  • Orghidan T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Arch. Hydrobiol., 55, 392–414. [Google Scholar]
  • Peyrard D., Sauvage S., Vervier P., Sánchez-Pérez J.M. and Quintard M., 2008. A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrol. Process., 22, 4257–4427. [CrossRef] [Google Scholar]
  • Peyrard D., Delmotte S., Sauvage S., Namour Ph., Gerino M., Vervier P. and Sánchez-Pérez J.M., 2011. Longitudinal transformation of nitrogen and carbon transport and in the hyporheic zone of an N-reach stream: a combined modeling and field study. Phys. Chem. Earth, 36, 599–611. [CrossRef] [Google Scholar]
  • Pusch M. and Schwoerbel J., 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol., 130, 35–52. [Google Scholar]
  • Pusch M., Fiebig D., Brettar I., Eisenmann H., Ellis B.K., Kaplan L.A., Lock M.A., Naegeli M.W. and Traunspurger W., 1998. The role of micro-organisms in the ecological connectivity of running waters. Freshw. Biol., 40, 453–495. [CrossRef] [Google Scholar]
  • Sánchez Pérez J.M., Vervier P., Garabetian F., Sauvage S., Loubet M., Rols J.L., Bariac T. and Weng P., 2003. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, south-western France. Nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol. Earth Syst. Sci., 7, 97–107. [Google Scholar]
  • Schindler J.E. and Krabbenhoft D.P., 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gazes to a temperate forest stream. Biogeochemistry, 43, 157–174. [CrossRef] [Google Scholar]
  • Schmidt C.K., Lange F.T. and Brauch H.J., 2004. Assessing the impact of different redox conditions and residence times on the fate of organic micropollutants during riverbank filtration. In: 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water, 13–15 October 2004, Minneapolis, Minnesota. [Google Scholar]
  • Schuytema G.S. and Nebeker A.V., 1998. Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Arch. Environ. Contam. Toxicol., 34, 370–376. [CrossRef] [PubMed] [Google Scholar]
  • Stanford J.A. and Ward J.V., 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic. J. N. Am. Benthol. Soc., 12, 48–60. [Google Scholar]
  • Storey R.G., Fulthorpe R.R. and Williams D.D., 1999. Perspectives and predictions on the microbial ecology of the hyporheic zone. Freshw. Biol., 41, 119–130. [CrossRef] [Google Scholar]
  • Sumpono, Perotti P., Belan A., Forestier C., Lavedrine B. and Bohatier J., 2003. Effect of diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization. Chemosphere, 50, 445–455. [CrossRef] [PubMed] [Google Scholar]
  • Weng P., Sánchez Pérez J.M., Sauvage S., Vervier P. and Giraud F., 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process., 17, 2375–2392. [Google Scholar]
  • White D.S., 1993. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc., 12, 61–69. [CrossRef] [Google Scholar]
  • Williams J.B., Mills G. and Barnhurst D., 2007. Transport and degradation of a trichloroethylene plume within a stream hyporheic zone. In: Proceedings of the 2007 National Conference on Environmental Science and Technology, 189–194. [Google Scholar]
  • Wyss A., Boucher J., Montero A. and Marison I., 2006. Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microbiol. Technol., 40, 25–31. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.