Open Access
Issue
Int. J. Lim.
Volume 58, 2022
Article Number 11
Number of page(s) 12
DOI https://doi.org/10.1051/limn/2022011
Published online 23 September 2022
  • Andrews SJ, Cwiklinski K, Dalton JP. 2022. The discovery of Fasciola hepatica and its life cycle, in Dalton JP (ed), Fasciolosis, 2nd edn. Wallingford, UK: CABI Publishing, pp. 1–22. [Google Scholar]
  • Ayadi A, Ben Rachid MS, Kennou H, Bradai K, Rondelaud D. 1993. Études épidémiologiques sur un foyer de distomatose à Fasciola hepatica L. dans les oasis de Tozeur (Tunisie). Bull Soc Fr Parasitol 11: 217–222. [Google Scholar]
  • Belfaiza M, Moncef M, Rondelaud D, Dreyfuss G. 2008. Galba truncatula: characteristics of snail burying in an irrigated area subjected to periodical drying. Free Papers, EMOP 10, Paris, 24–29 August 2008 , 191–194 [Google Scholar]
  • Belfaiza M, Vignoles P, Moncef M, Rondelaud D. 2009. Galba truncatula (Mollusca Gastropoda, Lymnaeidae), le mollusque hôte de Fasciola hepatica: son aptitude à supporter un assèchement périodique en zone irriguée sous climat semi-aride. Rev Med Vet 160: 103–107. [Google Scholar]
  • Boray JC. 1978. The potential impact of exotic Lymnaea spp. on fascioliasis in Australasia. Vet Parasitol 4: 127–141. [CrossRef] [Google Scholar]
  • Brönmark C. 1985. Freshwater snail diversity: effects of pond area, habitat heterogeneity and isolation. Oecologia 67: 127–131. [CrossRef] [PubMed] [Google Scholar]
  • Burgmer T, Hillebrand H, Pfenninger M. 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93–103. [CrossRef] [PubMed] [Google Scholar]
  • Caminade C, McIntyre KM, Jones AE. 2019. Impact of recent and future climate change on vector‐borne diseases. Ann N Y Acad Sci 1436: 157–173. [CrossRef] [PubMed] [Google Scholar]
  • Caron Y, Lasri S, Losson B. 2007. Fasciola hepatica: an assessment on the vectorial capacity of Radix labiata and R. balthica commonly found in Belgium. Vet Parasitol 149: 95–103. [CrossRef] [PubMed] [Google Scholar]
  • Caron Y, Martens K, Lempereur L, Saegerman C, Losson B. 2014. New insight in lymnaeid snails (Mollusca, Gastropoda) as intermediate hosts of Fasciola hepatica (Trematoda, Digenea) in Belgium and Luxembourg. Parasit Vectors 7: 66. [CrossRef] [PubMed] [Google Scholar]
  • Chèvremont P. 2008. Carte géologique harmonisée du département de la Haute-Vienne (87). Notice technique. BRGM/RP-57447-FR: 236 pp. [Google Scholar]
  • Collins M, Sutherland M, Bouwer L, Cheong SM, Frölicher T, Jacot des Combes H, et al. 2019. Extremes, abrupt changes and managing risk. In: Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, et al. (eds), IPCC special report on the ocean and cryosphere in a changing climate, Available at: https://www.ipcc.ch/srocc/chapter/chapter-6 (accessed 22 November 2021). [Google Scholar]
  • Cordellier M, Pfenninger M. 2009. Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18: 534–544. [CrossRef] [PubMed] [Google Scholar]
  • Cordellier M, Pfenninger A, Streit B, Pfenninger M. 2012. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol 159: 2519–2531. [CrossRef] [Google Scholar]
  • Correa AC, Escobar JS, Durand P, Renaud F, David P, Jarne P, et al. 2010. Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of fascioliasis. BMC Evol Biol 10: 381. [CrossRef] [PubMed] [Google Scholar]
  • Correa AC, Escobar JS, Noya O, Velásquez LE, González-Ramírez C, Hurtrez-Boussès S, et al. 2011. Morphological and molecular characterization of Neotropic Lymnaeidae (Gastropoda: Lymnaeoidea), vectors of fasciolosis. Infect Genet Evol 11: 1978–1988. [CrossRef] [PubMed] [Google Scholar]
  • Cross WF, Benke AC. 2002. Intra- and interspecific competition among coexisting lotic snails. Oikos 96: 251–264. [CrossRef] [Google Scholar]
  • Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366: eaax3100. [CrossRef] [PubMed] [Google Scholar]
  • Domisch S, Jähnig SC, Haase P. 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshw Biol 56: 2009–2020. [CrossRef] [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2014. Fasciola hepatica and Paramphistomum daubneyi: decrease in prevalence of natural infection in habitats colonized by Galba truncatula and Lymnaea glabra . Rev Med Vet 165: 160–166. [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D, Cabaret J. 2015. The mud snail (Galba truncatula). Ecology, parasitism and control. Germany: Lambert Academic Publishing, Saarbrücken, 238 pp. [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2016a. Current decline in the number and size of populations of Galba truncatula and Omphiscola glabra, intermediate hosts of Fasciola hepatica, on the acidic soils of Central France. Parasite 23: 46. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2016b. Déclin dans le nombre et la taille des populations d'Omphiscola glabra dans le nord de la Haute-Vienne au cours des trente dernières années. Ann Sci Limousin 27: 23–30. [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2018a. Galba truncatula and Omphiscola glabra (Gastropoda, Lymnaeidae): present decline in populations living on sedimentary soils in central France. Ann Limnol-Int J Lim 54: 11. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2018b. Relationships between the distribution of Galba truncatula (Gastropoda: Lymnaeidae), climatic conditions and the altitude of municipalities in Haute Vienne (France). Ann Limnol-Int J Lim 54: 19. [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2018c. Omphiscola glabra O.F. Müller, 1774 (Gastropoda, Lymnaeidae): la distribution des populations et les caractéristiques de leurs habitats par rapport à l'altitude et aux conditions climatiques de la Haute-Vienne. MalaCo 14: 1–6. [Google Scholar]
  • Dreyfuss G, Vignoles P, Rondelaud D. 2021. Galba truncatula (O.F. Müller, 1774) (Gastropoda, Lymnaeidae): the colonization of new stations on acid soil by low numbers of snails. Ann Limnol-Int J Lim 57: 26. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fox NJ, White PCL, McClean CJ, Marion G, Evans A, Hutchings MR. 2011 Predicting impacts of climate change on Fasciola hepatica risk. PLoS One 6: e16126. [CrossRef] [PubMed] [Google Scholar]
  • Goumghar MD, Rondelaud D, Dreyfuss G, Benlemlih M. 2001. Influence of aestivation on the survival of Galba truncatula (Mollusca: Gastropoda) populations according to altitude. Ann Limnol-Int J Lim 37: 211–217. [CrossRef] [EDP Sciences] [Google Scholar]
  • Goumghar MD, Vignoles P, Rondelaud D, Dreyfuss G, Benlemlih M. 2001. Relations entre les générations annuelles de Galba truncatula, l'altitude et la nature de ses habitats dans le centre du Maroc. Rev Med Vet 152: 457–462. [Google Scholar]
  • Guy F, Rondelaud D, Botineau M, Dreyfuss G, Ghestem A. 1996. Étude de relations entre les plantes les plus fréquentes et l'abondance de Lymnaea truncatula Müller, vecteur de Fasciola hepatica Linné dans les prairies marécageuses sur sol acide. Rev Med Vet 147: 465–470. [Google Scholar]
  • Heino J, Virkkala R, Toivonen H. 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev Camb Philos Soc 84: 39–54. [CrossRef] [PubMed] [Google Scholar]
  • Hershkovitz Y, Strackbein J, Hering D. 2013. Climate-and-freshwater.info. Version: January 2014. Available at: www.climate-and-freshwater.info ( accessed 14 January 2020). [Google Scholar]
  • Hoverman JT, Davis CJ, Werner EE, Skelly DK, Relyea RA, Yurewicz KL. 2017. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058. [Google Scholar]
  • Hubendick B. 1958. Factors conditioning the habitat of freshwater snails. Bull World Health Organ 18: 1072–1080. [PubMed] [Google Scholar]
  • Intergovernmental panel on climate change (IPCC) 2020. Climate change and land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, by Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, et al. (eds). Available at: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (accessed 22 November 2021). [Google Scholar]
  • Johnson CN. 2020. Past and future decline and extinction of species. Available at: https://royalsociety.org/topics-policy/projects/biodiversity/decline-and-extinction (accessed 15 November 2021). [Google Scholar]
  • Knubben-Schweizer G, Rössler AS, Schade-Weskott E, Torgerson PR. 2022. Epidemiology and control, in: Dalton JP (ed), Fasciolosis, 2nd edn. Wallingford, UK: CABI Publishing, pp. 180–210. [Google Scholar]
  • Leclère D, Obersteiner M, Barrett M, Butchart SHM, Chaushary A, De Palma A., et al. 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585: 551–556. [CrossRef] [PubMed] [Google Scholar]
  • Leicht K, Seppälä O. 2019. Direct and transgenerational effects of an experimental heat wave on early life stages in a freshwater snail. Freshw Biol 64: 2131–2140. [CrossRef] [Google Scholar]
  • Lofty WM. 2014. Climate change and epidemiology of human parasitosis in Egypt: a review. J Adv Res 5: 607–613. [CrossRef] [PubMed] [Google Scholar]
  • Lydeard C, Coxie RH, Ponder WF, Bogan AE, Bouchet P, Clark SA, et al. 2004. The global decline of nonmarine mollusks. BioScience 54: 321–330. [CrossRef] [Google Scholar]
  • Mas-Coma S, Valero MA, Bargues MD. 2009. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol 163: 264–280. [CrossRef] [PubMed] [Google Scholar]
  • Maxwell S, Fuller RA, Brooks TM, Watson JEM. 2016. The ravages of guns, nets and bulldozers. Nature 536: 143–145. [CrossRef] [PubMed] [Google Scholar]
  • Mekroud A, Benakhla A, Benlatreche C, Rondelaud D, Dreyfuss G. 2002. First studies on the habitats of Galba truncatula, the snail host of Fasciola hepatica, and the dynamics of snail populations in northeastern Algeria. Rev Med Vet 153: 181–188. [Google Scholar]
  • Mekroud A, Benakhla A, Vignoles P, Rondelaud D, Dreyfuss G. 2004. Preliminary studies on the prevalences of natural fasciolosis in cattle, sheep, and the host snail (Galba truncatula) in northeastern Algeria. Parasitol Res 92: 502–505. [CrossRef] [PubMed] [Google Scholar]
  • Météo France. 2018. Bilan climatique de l'année 2018. Available at: https://www.francetvinfo.fr/meteo/climat/l-ete-2018-est-le-deuxieme-le-plus-chaud-enregistre-par-meteo-france-derriere-celui-de-2003_2914883.html (accessed 29 November 2021). [Google Scholar]
  • Météo France. 2019. Le bilan climatique 2019. 2019: au 3e rang des années les plus chaudes en rance depuis le début du XXe siècle. Available at: https://meteofrance.com/actualites-et-dossiers-0/2020-lannee-la-plus-chaude-en-france-depuis-1900 (accessed 29 November 2021). [Google Scholar]
  • Météo France. 2020. Bilan climatique 2020. 2020: l'année la plus chaude en France depuis 1900. Available at: https://meteofrance.com/actualites-et-dossiers-0/2020-lannee-la-plus-chaude-en-france-depuis-1900 (accessed 20 November 2021). [Google Scholar]
  • Météo France. 2021. Juillet 2021: souvent frais et pluvieux. Available at: https://meteofrance.com/actualites-et-dossiers/actualites/climat/juillet-2021-souvent-frais-et-pluvieux (accessed 20 January 2022). [Google Scholar]
  • Moens R. 1991. Factors affecting Lymnaea truncatula populations and related control measures. J Med Appl Malacol 3: 73–84. [Google Scholar]
  • Novobilský A, Kašný M, Beran L, Rondelaud D, Höglund J. 2013. Lymnaea palustris and Lymnaea fuscus are potential but uncommon intermediate hosts of Fasciola hepatica in Sweden. Parasit Vectors 6: 251. [CrossRef] [PubMed] [Google Scholar]
  • Novobilský A, Engström A, Sollenberg S, Gustafsson K, Morrisson DA, Höglund J. 2014. Transmission patterns of Fasciola hepatica to ruminants in Sweden. Vet Parasitol 203: 276–286. [CrossRef] [PubMed] [Google Scholar]
  • Olkeba BK, Boets P, Mereta ST, Yeshigeta M, Akessa M, Ambelu A, et al. 2020. Environmental and biotic factors affecting freshwater snail intermediate hosts in the Ethiopian Rift Valley region. Parasit Vectors 13: 292. [CrossRef] [PubMed] [Google Scholar]
  • Ollerenshaw CB, Smith LP. 1969. Meteorological factors and forecasts of helminthic diseases. Adv Parasitol 7: 283–323. [CrossRef] [PubMed] [Google Scholar]
  • Osenberg CW. 1989. Resource limitation, competition and the influence of life history in a freshwater snail community. Oecologia 79: 512–519. [CrossRef] [PubMed] [Google Scholar]
  • Pearce TA, Paustian ME. 2013. Are temperate land snails susceptible to climate change through reduced altitudinal ranges? A Pennsylvania example. Am Malacol Bull 31: 213–224. [CrossRef] [Google Scholar]
  • Ponder WF, Lunney D. 1999. The other 99%: the conservation and biodiversity of invertebrates. Royal Zoological Society of New South Wales, Mosman, Australia: 455 pp. [Google Scholar]
  • Poulin R. 2006. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132: 143–151. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: https://www.R-project.org (accessed 19 October 2018). [Google Scholar]
  • Relf VE, Good B, McCarthy F, de Waal T. 2009. Evidence of Fasciola hepatica infection in Radix peregra and a mollusc of the family Succineidae in Ireland. Vet Parasitol 163: 152–155. [CrossRef] [PubMed] [Google Scholar]
  • Rondelaud D, Hourdin P, Vignoles P, Dreyfuss G. 2005. The contamination of wild watercress with Fasciola hepatica in central France depends on the ability of several lymnaeid snails to migrate upstream towards the beds. Parasitol Res 95: 305–309. [CrossRef] [PubMed] [Google Scholar]
  • Rondelaud D, Hourdin P, Vignoles P, Dreyfuss G, Cabaret J. 2011. The detection of snail host habitats in liver fluke infected farms by use of plant indicators. Vet Parasitol 181: 166–173. [CrossRef] [PubMed] [Google Scholar]
  • Rondelaud D, Titi A, Vignoles P, Mekroud A., Dreyfuss G. 2014. Adaptation of preadult Lymnaea fuscus and Radix balthica to Fasciola hepatica through the infection of several successive generations of snails. Parasit Vectors 7: 296. [CrossRef] [PubMed] [Google Scholar]
  • Rondelaud D, Vignoles P, Dreyfuss G, Mage C. 2006. The control of Galba truncatula (Gastropoda: Lymnaeidae) by the terrestrial snail Zonitoides nitidus on acid soils. Biol Control 39: 290–299. [Google Scholar]
  • Rondelaud D, Vignoles P, Dreyfuss G. 2017. La Limnée étroite (Omphiscola glabra O.F. Müller, 1774): les caractéristiques des habitats sur sols acides en fonction du type de biotope. MalaCo 13: 1–4. [Google Scholar]
  • Rondelaud D, Vignoles P, Dreyfuss G. 2019. La Limnée étroite est-elle capable de s'adapter à de nouvelles stations sur sol acide lorsque de faibles effectifs sont utilisés ? Ann Sci Limousin 28: 2–11. [Google Scholar]
  • Rondelaud D, Vignoles P, Hourdin P, Dreyfuss G. 2021. Les conséquences du réchauffement climatique sur les hôtes intermédiaires de Fasciola hepatica en Haute-Vienne. Ann Sci Limousin 29: 22–41. [Google Scholar]
  • Sabourin E. 2018. Dynamique de la fasciolose dans un système fortement anthropisé : la Camargue. PhD thesis, University of Montpellier, France: 252 pp. [Google Scholar]
  • Salo T, Stamm C, Burdon FJ, Räsänen K, Seppälä O. 2017. Resilience to heat waves in the aquatic snail Lymnaea stagnalis: additive and interactive effects with micropollutants. Freshw Biol 62: 1831–1846. [Google Scholar]
  • Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611. [CrossRef] [Google Scholar]
  • Short EE, Caminade C, Thomas BN. 2017. Climate change: contribution to the emergence or re-emergence of parasitic diseases. Infect Dis: Res Treat 10: 1178633617732296. [Google Scholar]
  • Spooner FEB, Pearson RG, Freeman R. 2018. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob Change Biol 24: 4521–4531. [CrossRef] [Google Scholar]
  • Taylor M. 2009. Changing patterns of parasitism in sheep. In Practice 31: 474–483. [CrossRef] [Google Scholar]
  • Van Dijk J, Sargison ND, Kenyon F, Skuce PJ. 2010. Climate change and infectious disease: helminthological challenges to farmed ruminants in temperate regions. Animal 4: 377–392. [CrossRef] [PubMed] [Google Scholar]
  • Vareille-Morel C, Dreyfuss G, Rondelaud D. 1999. The characteristics of habitats colonized by three species of Lymnaea in swampy meadows on acid soil: their interest for fasciolosis control. Ann Limnol-Int J Lim 35: 173–178. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vareille-Morel C, Dreyfuss G, Rondelaud D. 2007. Les habitats des Lymnaeidae sur sol acide. À propos de quelques observation dans la région Limousin sur une trentaine d'années. MalaCo 4: 143–147. [Google Scholar]
  • Vázquez AA, Alda P, Lounnas M, Sabourin E, Alba A, Pointier JP, et al. 2019. Lymnaeid snails hosts of Fasciola hepatica and Fasciola gigantica (Trematoda: Digenea): a worldwide review. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 13: 1–15. [Google Scholar]
  • Vignoles P, Dreyfuss G, Rondelaud D. 2017. Detection of habitats colonized by Omphiscola glabra (Gastropoda: Lymnaeidae) on acid soils using indicator plants. Ann Limnol-Int J Lim 53: 261–269. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vignoles P, Rondelaud D, Dreyfuss G. 2016. Aptitude of Lymnaea palustris and L. stagnalis to Fasciola hepatica larval development through the infection of several successive generations of 4-mm high snails. Parasitol Res 115: 2263–2268. [CrossRef] [PubMed] [Google Scholar]
  • Vignoles P, Rondelaud D, Dreyfuss G. 2018. The snail Omphiscola glabra. Ecology, parasitism and conservation. Editions Universitaires Européennes, Saarbrücken, Germany: 194 pp. [Google Scholar]
  • Welter-Schultes F. 2012. European non-marine molluscs. A guide for species identification. Planet Poster Editions, Göttingen, Germany: 768 pp. [Google Scholar]
  • Woodward G, Perkins DM, Brown LE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc, B Biol Sci 365: 2093–2106. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.