Free Access
Issue |
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/limn/2021015 | |
Published online | 21 September 2021 |
- Bi XD, Zhang SL, Dai W, Xing KZ, Yang F. 2013. Effects of lead (II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa. Water Sci Technol 67: 803–809. [CrossRef] [PubMed] [Google Scholar]
- Burkert U, Hyenstrand P, Drakare S, Blomqvist P. 2001. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquat Ecol 35: 11–17. [CrossRef] [Google Scholar]
- Chorus EI, Bartram J. 1999. Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management. London: Taylor & Francis. [CrossRef] [Google Scholar]
- Chu Z, Jin X, Yang B, Zeng QR. 2007. Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. J Plankton Res 29: 739–745. [CrossRef] [Google Scholar]
- Gan N, Xiao Y, Zhu L, et al. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14: 730–742. [CrossRef] [PubMed] [Google Scholar]
- Guo L. 2007. Doing battle with the green monster of Taihu Lake. Science 317: 1166–1166. [Google Scholar]
- Han LH, Yang GJ, Liu Y, Qin BQ, Zhong CN, Yang HW. 2018. Effect of disturbance intensity on the growth and chlorophyll fluorescence of Microcystis flos-aquae colony in Lake Taihu. Res Environ Sci 31: 265–272. [Google Scholar]
- Jang MH, Ha K, Joo GJ, Takamura N. 2003. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshw Biol 48: 1540–1550. [CrossRef] [Google Scholar]
- Kang L, He YX, Dai LC, et al. 2019. Interactions between suspended particulate matter and algal cells contributed to the reconstruction of phytoplankton communities in turbulent waters. Water Res 149: 251–262. [PubMed] [Google Scholar]
- Karp-Boss L, Boss E, Jumars PA. 2000. Motion of dinoflagellates in a simple shear flow. Limnol Oceanogr 45: 1594–1602. [CrossRef] [Google Scholar]
- Li M, Xiao M, Zhang P, Hamilton DP. 2018. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis, under high turbulent mixing[J]. Water Res 141: 340–348. [CrossRef] [PubMed] [Google Scholar]
- Li M, Zhu W, Gao L, Lu L. 2013. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25: 1023–1030. [CrossRef] [Google Scholar]
- Liu Y, Yang G, Han L, Qin BQ, Zhong CN, Yang HW. 2017. Effects of different disturbance intensity on the colony size of Microcystis flos-aquae in Lake Taihu. Ecol Environ Sci 26: 1961–1968. [Google Scholar]
- Macintyre S, Jellison R. 2001. Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. Hydrobiologia 466: 13–29. [CrossRef] [Google Scholar]
- Nakamura T, Adachi Y, Suzuki M. 1993. Flotation and sedimentation of a single Microcystis floc collected from surface bloom. Water Res 27: 979–983. [CrossRef] [Google Scholar]
- O'Brien KR, Meyer DL, Waite AM, Ivey GN, Hamilton DP. 2004. Disaggregation of Microcystis aeruginosa, colonies under turbulent mixing: laboratory experiments in a grid-stirred tank. Hydrobiologia 519: 143–152. [CrossRef] [Google Scholar]
- Oliver RL, Ganf GG. 2000. Freshwater blooms. Dordrecht: Kluwer Academic Publishers, 149–194. [Google Scholar]
- Paerl HW, Hall NS, Calandrino ES. 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409: 1739–1745. [PubMed] [Google Scholar]
- Plaas HE, Paerl HW. 2021. Toxic cyanobacteria: a growing threat to water and air quality. Environ Sci Technol 55: 44–64. [PubMed] [Google Scholar]
- Qin BQ, Yang GJ, Ma JR, et al. 2018. Spatiotemporal changes of cyanobacterial bloom in large shallow Eutrophic Lake Taihu, China. Front Microbiol 9. [PubMed] [Google Scholar]
- Reynolds CS. 1984. The Ecology of Freshwater Phytoplankton. Cambridge: Cambridge University Press. [Google Scholar]
- Reynolds CS. 2006. Ecology of Phytoplankton. Cambridge: Cambridge University Press, 1–435. [Google Scholar]
- Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61. [Google Scholar]
- Shen H, Niu Y, Xie P, Tao M, Yang X. 2011. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56: 1065–1080. [CrossRef] [Google Scholar]
- Tang XM, Krausfeldt LE, Shao K, et al. 2018. Seasonal gene expression and the ecophysiological implications of toxin Microcystis aeruginosa blooms in Lake Taihu. Environ Sci Technol 52: 11049–11059. [PubMed] [Google Scholar]
- Wu X, Kong F. 2009. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94: 258–266. [CrossRef] [Google Scholar]
- Xiao M, Li M, Reynolds CS. 2018. Colony formation in the cyanobacterium Microcystis. Biol Rev Camb Philos Soc 93: 1399–1420. [PubMed] [Google Scholar]
- Xu F, Zhu W, Xiao M, Li M. 2016. Interspecific variation in extracellular polysaccharide content and colony formation of Microcystis spp. cultured under different light intensities and temperatures. J Appl Phycol 28: 1533–1541. [CrossRef] [Google Scholar]
- Xu HP, Yang GJ, Zhou J, et al. 2014. Effect of nitrogen and phosphorus concentration on colony growth of Microcystis flos-aquae in Lake Taihu. J Lake Sci 26: 213–220. [CrossRef] [Google Scholar]
- Xu S, Yang Y, Xu J, Shi JQ, Song LR, Wu ZX. 2017. The physiological response of colonial and single-celled form of Microcystis to short-term high stress. Acta Hydrob Sinica 41: 443–447. [Google Scholar]
- Yamamoto Y, Shiah FK, Chen YL. 2011. Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Ann Limnol Int J Lim 47: 167–173. [CrossRef] [Google Scholar]
- Yan RR, Pang Y, Chen XF, Zhao W, Ma J. 2008. Effect of disturbance on growth of Microcystis aeruginosa in different nutrient levels. Environ Sci 29: 63–67. [Google Scholar]
- Yang GJ, Tang XM, Wilhelm SW, et al. 2020. Intermittent disturbance benefits colony size, biomass and dominance of Microcystis in Lake Taihu under field simulation condition. Harmful Algae 99: 101909. [PubMed] [Google Scholar]
- Yang GJ, Zhong CN, Qin BQ, Wang YB, Wang XP, 2017. Effects of in-situ simulative mixing on colony size of Microcystis in Lake Taihu. J Lake Sci 29: 363–368 [CrossRef] [Google Scholar]
- Yang Z. 2010. Study on the driving factors of colony formation in Mircocystis [Dissertation]. Beijing: University of Chinese Academy of Sciences. [Google Scholar]
- Yang Z, Kong F, Shi X, et al. 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J Phycol 44: 716–720. [CrossRef] [PubMed] [Google Scholar]
- Yang Z, Kong F, Shi X, Cao H. 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563: 225–230. [CrossRef] [Google Scholar]
- Zhang YL, Qin BQ, Chen WM, Gao G. 2004. Experimental study on underwater light intensity and primary productivity caused by variation of total suspended matter. Adv Water Sci 5: 615–620. [Google Scholar]
- Zhong CN, Yang GJ, Qin BQ, et al. 2019. Effects of mixing intensity on colony size and growth of Microcystis aeruginosa. Ann Limnol Int J Lim 55: 12 [CrossRef] [Google Scholar]
- Zhu W, Li M, Luo Y, et al. 2014. Vertical distribution of Microcystis colony size in Lake Taihu: its role in algal blooms. J Great Lake Res 40: 949–955. [CrossRef] [Google Scholar]
- Zhu W, Zhou XH, Chen HM, Li G, Xiao M, Li M. 2016. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments. Water Res 101: 167–175. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.