Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
Article Number 12
Number of page(s) 13
DOI https://doi.org/10.1051/limn/2021010
Published online 18 June 2021
  • Aguiar EC, Ferreira MT, Pinto P. 2002. Relative influence of environmental variables on macroinvertebrate assemblages from an Iberian basin. J North Am Benth Soc 21: 43–53. [Google Scholar]
  • Aizen M, Garibaldi L, Dondo M. 2009. Expansión de la soja y diversidad de la agricultura argentina. Ecol Austral 19: 45–54. [Google Scholar]
  • Allan JD. 2004. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35: 257–284. [CrossRef] [Google Scholar]
  • Amuchástegui G, di Franco L, Feijoó C. 2016. Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia 767: 65–79. [Google Scholar]
  • Andrade MI. 1986. Factores de deterioro ambiental en la cuenca del Río Luján. Contribución del Instituto de Geografía, Facultad de Filosofía y Letras (UBA), Buenos Aires, p. 224. [Google Scholar]
  • American Public Health Association (APHA), American Water Works Association, Water Environment Federation. 2012. Standard Methods for the Examination of Water and Wastewater. Washington: American Public Health Association, p. 541. [Google Scholar]
  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. In: Monitoring and Assessing Water Quality. Appendix B: (Part I), EPA 841–B–99–002, 2nd edn. Washington, DC: U.S. Environmental Protection Agency, Office of Water. [Google Scholar]
  • Bechara JA. 1996. The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina). Hydrobiologia 333: 95–109. [Google Scholar]
  • Bonvecchi VE, Zuleta GA. 2014. Degradación y pérdida de áreas ribereñas en el partido de Luján. In: Carballo CT and Goldberg S (eds.), Comunidad e información ambiental del riesgo. Las inundaciones y el río Luján. Argentina: Editorial Dunken, pp. 95– 108. [Google Scholar]
  • Buzai GD, Principi N. 2017. Identificación de áreas de potencial conflicto entre usos del suelo en la cuenca del Río Luján, Argentina. Rev Geogr Am Cent 59: 91–124. [Google Scholar]
  • Casset MA, Momo FR, Giorgi AD. 2001. Dinámica poblacional de dos especies de anfípodos y su relación con la vegetación acuática en un microambiente de la cuenca del río Luján (Argentina). Ecol Austral 11: 79–85. [Google Scholar]
  • Castañé PM, Sánchez-Caro A, Salibián A. 2015. Water quality of the Luján river, a lowland watercourse near the metropolitan area of Buenos Aires (Argentina). Environ Monit Assess 187: 645. [Google Scholar]
  • Cazenave J, Bacchetta C, Rossi A, Ale A, Campana M, Parma MJ. 2014. Deleterious effects of wastewater on the health status of fish: a field caging study. Ecol Indic 38: 104–112. [Google Scholar]
  • Cazzaniga NJ. 2011. Notas autoecológicas sobre Heleobia parchappii. In: Cazzaniga NJ (ed.), El género Heleobia en América del Sur. Amici Molluscarum special number. Sociedad Malacológica de Chile (SMACH) pp. 26–28. [Google Scholar]
  • Cerqueira TC, Mendonça RL, Gomes RL, de Jesus RM, da Silva DML. 2020. Effects of urbanization on water quality in a watershed in northeastern Brazil. Environ Monit Assess 192: 1–17. [Google Scholar]
  • César II, Martín SM, Rumi A, Tassara M. 2012. Mollusks (Gastropoda and Bivalvia) of the Multiple-Use Reserve Martín García Island, Río de la Plata River: biodiversity and ecology. Braz J Biol 72: 121–130. [Google Scholar]
  • Champion PD, Tanner CC, 2000. Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441: 1–12. [CrossRef] [Google Scholar]
  • Chelsea Nagy R, Graeme Lockaby G, Kalin L, Anderson C. 2011. Effects of urbanization on stream hydrology and water quality: the Florida Gulf Coast. Hydrol Process 26: 2019–2030. [Google Scholar]
  • Cochero J, Cortelezzi A, Tarda AS, Gómez N. 2016. An index to evaluate the fluvial habitat degradation in lowland urban streams. Ecol Indic 71: 134–144. [Google Scholar]
  • Colla MF, César II. 2019. Ecological aspects of natural populations of Hyalella pampeana (Crustacea, Amphipoda, Hyalellidae) from the Natural Reserve Island of Martín García (Río de La Plata, Argentina). Ann Acad Bras Cienc 91: e20170928. [Google Scholar]
  • Cortelezzi A, Sierra MV, Gómez N, Marinelli C, Rodrigues Capítulo A. 2013. Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environ Monit Assess 185: 5801–5815. [CrossRef] [PubMed] [Google Scholar]
  • Cortelezzi A, Ocón C, López van Oosterom MV, Cepeda R, Rodrigues Capítulo A. 2015. Nutrient enrichment effect on macroinvertebrates in a lowland stream of Argentina. Iheringia Sér Zool 105: 228–234. [Google Scholar]
  • Cortelezzi A, Barranquero R, Marinelli C, Fernández San Juan R, Cepeda R. 2019. Environmental diagnosis of an urban basin from a social–ecological perspective. Sci Total Environ 678: 267–277. [Google Scholar]
  • Cultid-Medina CA, Escobar F. 2016. Assessing the ecological response of Dung Beetles in an agricultural landscape using number of individuals and biomass in diversity measures. Environ Entomol 45: 310–319. [Google Scholar]
  • Cummins KW, Klug MJ. 1979. Feeding ecology of stream invertebrates. Annu Rev Ecol Evol Syst 10: 147–172. [Google Scholar]
  • Cummins KW, Merrit RW, Andrade PCN. 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40: 69–98. [CrossRef] [Google Scholar]
  • Dahlgren R, Van Nieuwenhuyse E, Litton G. 2004. Transparency tube provides reliable water-quality measurements. Calif Agr 58: 149–153. [Google Scholar]
  • Davis A. 1997. Climatic and biogeographical associations of southern African dung beetles (Coleoptera Scarabaeidae). Afr J Ecol 35: 10–38. [Google Scholar]
  • de la Fuente EB, Suárez SA. 2008. Problemas ambientales asociados a la actividad humana: la agricultura. Ecol Austral 18: 239–252. [Google Scholar]
  • de Melo SM, Takeda AM, Monkolski A. 2002. Seasonal dynamics of Callibaetis willineri (Ephemeroptera, Baetidae) associated with Eichhornia azurea (Pontedericeae) in Guaraná Lake of the Upper Paraná River, Brazil. Hydrobiologia 470: 57–62. [Google Scholar]
  • Denegri MJ, Goldberg S, Parella M. 2014. Caracterización del clima de Luján. In: Carballo CT and Goldberg S (eds.), Comunidad e Información Ambiental del Riesgo: Las inundaciones y el río Luján. Argentina: Editorial Dunken, pp. 47. [Google Scholar]
  • Domínguez E, Fernández HR, 2009. Macroinvertebrados bentónicos sudamericanos, Sistemática y biología. Tucumán, Argentina: Fundación Miguel Lillo p. 654. [Google Scholar]
  • Dufrêne M, Legendre P. 1997. Species assemblages and indicators species: theneed for a flexible assymetrical approach. Ecol Monogr 67: 345–366. [Google Scholar]
  • Ezcurra de Drago I, Marchese M, Montalto L. 2007. Benthic invertebrates. In: Iriondo MH, Paggi JC, and Parma MJ (eds.), The Middle Paraná River. Berlin: Springer, pp. 251–275. [Google Scholar]
  • Feijoó CS, Giorgi A, García ME, Momo F. 1999. Temporal and spatial variability in streams of a pampean basin. Hydrobiologia 394: 41–52. [Google Scholar]
  • Feld CK, Hering D. 2007. Community structure or function: effects of environmental stress on bentic macroinvertebrates at different spatial scales. Freshw Biol 52: 1380–1399. [Google Scholar]
  • Ferreiro N, Feijoó C, Giorgi A, Leggieri L. 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199–211. [CrossRef] [Google Scholar]
  • Fidalgo F. 1983. Algunas características de los sedimentos superficiales en la cuenca del río Salado y en la Pampa ondulada. La Plata: Coloq. Int. Hidrologia de Grandes Fianuras, pp. 1–19. [Google Scholar]
  • Firmiano KR, Ligeiro R, Macedo DR, Juen L, Hughes RM, Callisto M. 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecol Indic 74: 276–284. [Google Scholar]
  • Folke C, Jansson A, Larsson J, Costanza R. 1997. Ecosystem appropriation by cities. Ambio 26: 167–172. [Google Scholar]
  • Giorgi A, Banchero M, Rivelli S, Clarensio O, Cuevas W. 1999. Algunas variables indicativas de la calidad del agua del río Luján en su tramo medio. Actas VII Jornadas Pampeanas de Ciencias Naturales, 155–162. [Google Scholar]
  • Giorgi A, García ME, Feijoó C, Cuevas W, Vázquez Gómez A. 2000. Estudio comparativo de los principales arroyos afluentes del río Luján (Argentina). In: Pefaur JE (ed), Ecología Latinoamericana. Actas del III Congreso Latinoamericano de Ecología. Mérida: Editorial Universidad de Los Andes, pp. 99– 105. [Google Scholar]
  • Grapentine LC, Rosenberg DM. 1992. Responses of the freshwater amphipod Hyalella azteca to environmental acidification. Can J Fish Aquat Sci 49: 52–64. [Google Scholar]
  • Halstead JA, Kliman S, Berheide CW, Chaucer A, Cock-Esteb A. 2014. Urban stream syndrome in a small lightly developed watershed: a statistical analysis of water chemistry parameters land use patterns and natural sources. Environ Monit Assess 186: 3391–3414. [Google Scholar]
  • Hwang SA, Hwang SJ, Park SR, Lee SW. 2016. Examining the relationships between watershed urban land use and stream water quality using linear and generalized additive models. Water 8: 155. [Google Scholar]
  • Instituto Nacional del Agua. 2007. Diagnóstico del funcionamiento hidrológico hidráulico de la cuenca del río Luján, provincia de Buenos Aires. http://www.delriolujan.com.ar/estudioina.html (accessed May 15, 2019). [Google Scholar]
  • Jayawickreme DH, Santoni CS, Kim JH, Jobbágy EG, Jackson RB. 2011. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21: 2367–2379. [Google Scholar]
  • Law al AT, Adeloju SB. 2013. Progress and recent advances in phosphate sensors: a review. Talanta 114: 191–203. [Google Scholar]
  • Lombardo RJ, O'Farrell I, dos Santos Afonso M. 2010. Spatial and temporal ion dynamics on a complex hydrological system: the Lower Luján River (Buenos Aires, Argentina). Aquat Geochem 16: 293–309. [Google Scholar]
  • Lozano F, Muzón J, Torres S. 2009. Description of the final instar larva of Homeoura lindneri (Ris, 1928) and redescription of the larva of H. chelifera (Selys, 1876) (Odonata: Coenagrionidae). Zootaxa 2231: 47–54. [Google Scholar]
  • Manuel-Navarrete D, Gallopín GC, Blanco M, Díaz-Zorita M, Ferraro DO, Herzer H, Laterra P, Murmis MR, Podestá GP, Rabinovich J, Satorre EH, Torres F, Viglizzo EF. 2009. Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas. Environ Dev Sustain 11: 621–638. [Google Scholar]
  • Martín SM, Díaz AC. 2012. Population structure of Uncancylus concentricus (d'Orbigny, 1835) (Ancylidae, Pulmonata, Basommatophora) in the Multiple Use Reserve Martín García Island, Upper Río de la Plata, Argentina. Braz J Biol 72: 65–70. [Google Scholar]
  • Marzluff JM, Ewing K. 2001. Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendation for urbanizing landscapes. Restor Ecol 9: 280–292. [Google Scholar]
  • McCune B, Mefford MJ. 1999. Multivariate Analysis of Ecological Data, Version 4.25. Gleneden Beach, OR: MjM Software. [Google Scholar]
  • McGeoch MA, Chown SL. 1998. Scaling up the value of bioindicators. Trends Ecol Evol 13: 46–47. [Google Scholar]
  • McKinney ML. 2002. Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 42: 883–890. [Google Scholar]
  • Medan D, Torretta JP, Hodara K, de la Fuente EB, Montaldo NH. 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers Conserv 20: 3077–3100. [Google Scholar]
  • Medina AI, Paggi AC. 2004. Composición y abundancia de Chironomidae (Diptera) en un río serrano de zona semiárida (San Luis, Argentina). Rev Soc Entomol Argent 63: 107–118. [Google Scholar]
  • Medina AI, Scheibler EE, Paggi AC. 2008. Distribución de Chironomidae en dos sistemas fluviales ritrónicos (andino-serrano) de Argentina. Rev Soc Entomol Argent 67: 69–79. [Google Scholar]
  • Meyer JL, Paul MJ, Taulbee WK. 2005. Stream ecosystem function in urbanizing landscapes. J North Am Benth Soc 24: 602–612. [Google Scholar]
  • Milly PCD, Dunne KA, Vecchia AV. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350. [CrossRef] [PubMed] [Google Scholar]
  • Miserendino ML. 2001. Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia 444: 147–158. [Google Scholar]
  • Miserendino ML, Brand C, Di Prinzio CY. 2008. Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut 194: 91–110. [Google Scholar]
  • Miserendino ML, Brand C. 2009. Environmental effects of urbanization on streams and rivers in Patagonia (Argentina): the use of macroinvertebrates in monitoring. In: Justin Daniels A (ed.), Advances in Environmental Research. New York: NOVA pp. 183–220. [Google Scholar]
  • Molineri C, Tejerina EG, Torrejón SE, Pero EJ, Hankel GE. 2020. Indicative value of different taxonomic levels of Chironomidae for assessing the water quality. Ecol Indic 108: 105703. [Google Scholar]
  • Monk WA, Compson ZG, Choung CB, Korbel KL, Rideout NK, Baird DJ. 2019. Urbanisation of floodplain ecosystems: weight-of-evidence and network metaanalysis elucidate multiple stressor pathways. Sci Total Environ 684: 741–752. [Google Scholar]
  • Moore AA, Palmer MA. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol Appl 15: 1169–1177. [Google Scholar]
  • Moya C, Valdovino C, Moraga A, Romero F, Debels P, Oyanedel A. 2009. Patrones de distribución espacial de ensambles de macroinvertebrados bentónicos de un sistema fluvial Andino Patagónico. Rev Chil Hist Nat 82: 425–442. [Google Scholar]
  • Muralidharan M, Selvakumar C, Sundar S, Raja M. 2010. Macroinvertebrates as potential indicators of environmental quality. Int J Biol Technol 1: 23–28. [Google Scholar]
  • Naiman RJ, Décamps H. 1997. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28: 621–658. [Google Scholar]
  • Nieto C, Ovando XMC, Loyola R, Izquierdo A, Romero F, Molineri C, Rodríguez J, Rueda Martín P, Fernández H, Manzo V, Miranda MJ. 2017. The role of macroinvertebrates for conservation of freshwater systems. Ecol Evol 7: 5502–5513. [Google Scholar]
  • Ocón C, Rodrígues Capítulo A. 2004. Presence and abundance of Ephemeroptera and other sensitive macroinvertebrates in relation with habitat conditions in pampean streams (Buenos Aires, Argentina). Arch Hydrobiol 159: 473–487. [Google Scholar]
  • O'Farrell I, Lombardo R, De Tezanos Pinto P, López C. 2002. The assessment of water quality in the Lower Luján River (Buenos Aires, Argentina): phytoplankton and algal bioassays. Environ Pollut 120: 207–218. [Google Scholar]
  • Ormerod SJ, Dobson M, Hildrew AG, Townsend DCR. 2010. Multiple stressors in freshwater ecosystems. Freshwater Biol 55: 1–4. [Google Scholar]
  • Paggi AC, Ocón C, Tangorra M, Rodrigues Capítulo A. 2006. Response of the zoobenthos community along the dispersion plume of a highly polluted stream in the receiving waters of a large river (Rio de la Plata, Argentina). Hydrobiologia 568: 1–14. [Google Scholar]
  • Palomeque R. 2007. Efectos del uso sobre algunas propiedades físicas y químicas del suelo y su utilización como indicadores de calidad. Trabajo Final de Aplicación. Luján: Universidad Nacional de Luján. [Google Scholar]
  • Paul MJ, Meyer JL. 2001. Streams in the urban landscape. Annu Rev Ecol Syst 32: 333–365. [Google Scholar]
  • Pizarro H, Alemanni ME. 2005. Variables físico-químicas del agua y su influencia en la biomasa del perifiton en un tramo inferior del Río Luján (Provincia de Buenos Aires). Ecol Austral 15: 73–88. [Google Scholar]
  • Prat N. 1997. La problemática de la conservación de los ríos españoles como ecosistemas. Ecosistemas 20: 42–47. [Google Scholar]
  • Prat N, Rieradevall M, 2014. Guía para el reconocimiento de las larvas de Chironomidae (DIPTERA) de los ríos mediterráneos, Grup de recerca F.E.M. (Freshwater Ecology and Management), Universidad de Barcelona, p. 29. [Google Scholar]
  • Quantum GIS Geographic Information System. 2017. Open source geospatial foundation Project. http://qgis.osgeo.org. [Google Scholar]
  • R Development Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. [Google Scholar]
  • Rocha L, Hegoburu C, Torremorel A, Feijoó C, Navarro E, Fernández H. 2020. Use of ecosystem health indicators for assessing anthropogenic impacts on freshwaters in Argentina: a review. Environ Monit Assess 192: 611. [Google Scholar]
  • Rodrigues Capitulo A, Gómez N, Giorgi A, Feijoó C. 2010. Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia 657: 53–70. [Google Scholar]
  • Rodrigues Capítulo A, Armendáriz L, Siri A, Altieri P, Ocon C, Cortese B, Rodríguez Catanzaro L, Zanotto Arpellino JP, Rodríguez M, Donato M. 2020. Caracterización estructural y funcional de los macroinvertebrados en los bañados de desborde fluvial del área pampeana. Biol Acuática 35: 015–015. [Google Scholar]
  • Rosenberg DM, Resh VH. 1993. Freshwater biomonitoring and benthic macroinvertebrates. London: Chapman and Hall, p. 488. [Google Scholar]
  • Rosso JJ, Fernández Cirelli AF. 2013. Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica 43: 18–26. [Google Scholar]
  • Ruiz-Picos RA, Sedeño-Díaz JE, López-López E, 2016. Ensambles de macroinvertebrados acuáticos relacionados con diversos usos del suelo en los ríos Apatlaco y Chalma-Tembembe (cuenca del Río Balsas), México. Hidrobiológica 26: 443–458. [Google Scholar]
  • Rumi A, Gutiérrez Gregoric DE, Núñez V, Darrigran GA. 2008. Malacología Latinoamericana. Moluscos de agua dulce de Argentina. Rev Biol Trop 56: 77–111. [Google Scholar]
  • Sabater S, Butturini A, Clement JC, Burt T, Dowrick D, Hefting M, Matre V, Pinay G, Postolache C, Rzepecki M, Sabater F, 2003. Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems 6: 20–30. [Google Scholar]
  • Sala JM, Gonzalez N, Kruse E, 1983. Generalización hidrológica de la provincia de Buenos Aires. Coloquio Internacional sobre Hidrología de Grandes Llanuras 976–1009. [Google Scholar]
  • Sánchez Caro A, Giorgi A, Doyle S, Piccinini M. 2012. La calidad del agua del Río Luján (Buenos Aires) y el potencial aporte del biofilm para su evaluación. Biol Acuática 27: 191–208. [Google Scholar]
  • Sánchez-Pérez JM, Trémolières M, 2003. Change in groundwater chemistry as a consequence of suppression of floods: the case of the Rhine floodplain. J Hydrol 270: 89–104. [Google Scholar]
  • Scheibler EE, Ciocco NF, 2011. Distribution of macroinvertebrate assemblages along a saline wetland in harsh environmental conditions from Central-West Argentina. Limnologica 41: 37–47. [Google Scholar]
  • Serra SR, Graça MA, Dolédec S, Feio MJ, 2017. Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environ Monit Assess 189: 326. [Google Scholar]
  • Solis M, Arias M, Fanelli S, Bonetto C, Mugni H, 2019. Agrochemicals' effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecol Indic 101: 373–379. [Google Scholar]
  • Sponseller RA, Benfield EF, Valett HM, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol 46: 1409–1424. [Google Scholar]
  • Strickland JD, Parsons TR. 1968. A Practical Handbook of Seawater Analysis. Ottawa, ON: Fisheries Research Board of Canada, p. 310. [Google Scholar]
  • Tagliaferro M, Giorgi A, Torremorell A, Albariño R. 2020. Urbanisation reduces litter breakdown rates and affects benthic invertebrate structure in Pampean streams. Int Rev. Hydrobiol. 105: 33–43. [Google Scholar]
  • Taylor SL, Roberts SC, Walsh CJ, Hatt BE. 2004. Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management. Freshw Biol 49: 835–851. [Google Scholar]
  • Tickner D, Armitage PD, Bickerton MA, Hall KA. 2000. Assessing stream quality using information on mesohabitat distribution and character. Aquat Conserv: Mar Freshw Ecosyst 10: 170–196. [Google Scholar]
  • Tietze E. 2011. Distribución de Heleobia parchappii en ambientes dulceacuícolas de la Región Pampeana (Argentina). In: Cazzaniga NJ (ed.), El género Heleobia en América del Sur. Amici Molluscarum special number. Sociedad Malacológica de Chile (SMACH), pp. 73–75. [Google Scholar]
  • Tietze E, Cristini PA, Grondona SI. 2019. Mollusk communities differ between microenvironments within a shallow lake in the Pampean Region, Argentina. Ecol Austral 29: 1–11. [Google Scholar]
  • Townsend CR, Doledec S, Norris R, Peacock K, Arbuckle C. 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshw Biol 48: 768–785. [Google Scholar]
  • van Rensburg BJ, McGeoch MA, Chown SL, van Jaarsveld AS. 1999. Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol Conserv 88: 145–153. [Google Scholar]
  • Velázquez GA. 2013. La Calidad Ambiental en la Argentina: análisis regional y departamental. Tandil: Universidad Nacional del Centro de la Provincia de Buenos Aires. [Google Scholar]
  • Vidaurre M, Pacheco LF, Roldán AI. 2006. Composition and abundance of birds of Andean alder (Alnus acuminata) patches with past and present harvest in Bolivia. Biol Conserv 132: 12–21. [Google Scholar]
  • Viglizzo E, Jobbágy EG. 2010. Expansión de la frontera agropecuaria en Argentina y su impacto ecológico-ambiental. Buenos Aires: Ediciones INTA, p. 106. [Google Scholar]
  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP. 2005. The urban stream syndrome: current knowledge and the search for a cure. J North Am Benth Soc 24: 706–723. [Google Scholar]
  • Wantzen KM, Marchese MR, Marques MI, Battirola LD. 2016. Chapter 14: Invertebrates in Neotropical Floodplains. In: Batzer D and Boix D (eds.), Invertebrates in Freshwater Wetlands. Cham: Springer, pp. 493– 524. [Google Scholar]
  • Webb JM, Suter PJ. 2011. Identification of Larvae of Australian Baetidae. Mus Vic Sci Rep 15: 1–24. [Google Scholar]
  • Wetzel RG. 2001. Limnology: Lake and River Ecosystems. San Diego: Academic Press/Elsevier, p. 1006. [Google Scholar]
  • Woodward G, Perkins DM, Brown LE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B 365: 2093–2106. [Google Scholar]
  • Xenopoulos MA, Lodge DM, Alcamo J, Märker M, Schulze K, Van Vuuren DP. 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biol 11: 1557–1564. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.