Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
Article Number 11
Number of page(s) 10
DOI https://doi.org/10.1051/limn/2021008
Published online 16 June 2021
  • Aiba S, Ogawa T. 1977. Assessment of growth yield of a blue-green alga, Spirulina platensis, in axenic and continuous culture. J Gen Microbiol 102: 179–182. [Google Scholar]
  • Altınışık M. 2000. Serbest oksijen radikalleri ve antioksidanlar. Aydın Tıp Fakültesi, Biyokimya Ders Notları. [Google Scholar]
  • Arora A, Sairam RK, Srivastava GC. 2002. Oxidative stress and antioxidative system in plants. Curr Sci 82: 1227–1238. [Google Scholar]
  • Asada K. 1992. Ascorbate peroxidase-hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85: 235–241. [Google Scholar]
  • Avashthi H, Pathak RK, Pandey N, Arora S, Mishra AK, Gupta VK, Ramteke PW, Kumar A. 2018. Transcriptome-wide identification of genes involved in Ascorbate–Glutathione cycle (Halliwell–Asada pathway) and related pathway for elucidating its role in antioxidative potential in finger millet (Eleusine coracana (L.)). Biotechnology 8: 1–18. [Google Scholar]
  • Aysel V. 2005. Check-list of the freshwater algae of Turkey. J Black Sea/Medit Environ 11: 1–124. [Google Scholar]
  • Bagchi SN, Das PK, Banerjee S, Saggu M, Bagchi D. 2012. A bentazone-resistant mutant of cyanobacterium, Synechococcus elongatus PCC7942 adapts different strategies to counteract on bromoxynil- and salt-mediated oxidative stress. Physiol. Mol. Biol. Plant. 18: 115–123. [Google Scholar]
  • Bajguz A. 2010. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exper Bot 68: 175–179. [Google Scholar]
  • Barbieri MV, Peris A, Postigo C, Moya-Garcés A, Monllor-Alcaraz LS, Rambla-Alegre M, de Alda ML. 2021. Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (EBRO RIVER delta) and risk assessment for aquatic organisms. Environ Poll 274: 115813. [Google Scholar]
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large cobsequences of minor changes in conditions. Anal Biochem 161: 559–566. [Google Scholar]
  • Boesten JJTI, Van der Pas LJT. 2000. Movement of water, bromide and the pesticides ethoprophos and bentazone in a sandy soil: the Vredepeel data set. Agric Water Manage 44: 21–42. [Google Scholar]
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. [Google Scholar]
  • Cedergreen N, Streibig JC. 2005. The toxicity of herbicides to non‐target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manage Sci 61: 1152–1160. [Google Scholar]
  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T. 2007. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Safe 66: 204–209. [Google Scholar]
  • Das PK, Bagchi SN. 2012. Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. Protoplasma 249: 65–74. [Google Scholar]
  • DeLorenzo ME, Scott GI, Ross PE. 2001. Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20: 84–98. [Google Scholar]
  • Doğru A. 2019. Antioxidant systems in plants and responses to salt stress. IJEASED 1: 164–185. [Google Scholar]
  • Doğru A. 2021. Hıyar (Cucumis sativus L.) Bitkisinin Yüksek Sıcaklık Stresine Verdiği Antioksidant Cevaplar. Turk J Agric Res 8: 42–48 (in Turkish). [Google Scholar]
  • Doğru A, Demirtaş E. 2021. Exogenous potassium nitrate alleviates salt-induced oxidative stress in maize. Eur J Biol Res 11: 24–33. [Google Scholar]
  • Galhano V, Peixoto F, Gomes‐Laranjo J. 2010. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system. Environ Toxicol 25: 517–526. [Google Scholar]
  • Galhano V, Santosa H, Olibeirab MN, Gomes-Laranjoa J, Peixotoc F. 2011. Changes in fatty acid profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon. Process Biochem 46: 2152–2162. [Google Scholar]
  • Günsel A, Tunca H, Bilgiçli AT, Doğru A, Yarasir MN, Sevindik TO, Er Ş. 2018. The effects of a water-soluble alpha tetra-substituted zinc phthalocyanine derivative on Arthrospira platensis − M2 strain. J Porphyr Phthalocyanines 22: 686–692. [Google Scholar]
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189–198. [Google Scholar]
  • Hourmant A, Amara A, Pouline P, Durand G, Arzul G, Quiniou F. 2009. Effect of bentazon on growth and physiological responses of marine diatom: Chaetoceros gracilis. Toxicol Mechan Methods 19: 109–115. [Google Scholar]
  • Ighodaro OA, Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54: 287–293. [Google Scholar]
  • Karpuz B, Çakır Ö. 2021. Effect of proteasome inhibitor MG132 on the expression of oxidative metabolism related genes in tomato. Food Sci Technol (ahead). [Google Scholar]
  • Kaul S, Sharma SS, Mehta IK. 2008. Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34: 315–320. [Google Scholar]
  • Kılıç HE, Tunca H, Sevindik TO, Doğru A. 2019. Assessment of the effects of zinc on the growth and antioxidant enzymes in Scenedesmus ellipsoideus Chodat. Oceanol Hydrobiol Stud 48: 270–278. [Google Scholar]
  • Koç E, Üstün AS. 2008. Patojenlere karşı bitkilerde savunma ve antioksidanlar. Erciyes Uni J Inst Sci Technol 24: 82–100. [Google Scholar]
  • Kong FX, Sang WL, Hu W, Li JJ. 1999. Physiological and biochemical response of Scenedsmus obliquus to combined effects of Al, Ca, and low pH. Bull Environ Cont Toxicol 62, 179–186. [Google Scholar]
  • Kortekamp A. 2011. Herbicides and Environment. Rijeka, Croatia: InTechOpen, p. 256. [Google Scholar]
  • Li X, Ping X, Xiumei S, Zhenbin W, Liqiang X. 2005. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol Environ Safe 60: 188–192. [Google Scholar]
  • Lin CC, Kao CH. 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Reg 30: 151–155. [Google Scholar]
  • Ma J, Tong S, Wang P, Chen J. 2010. Toxicity of seven herbicides to the three cyanobacteria Anabaena flos-aquae, Microcystis flos-aquae and Mirocystis aeruginosa. Int J Environ Res 4: 347–352. [Google Scholar]
  • Macedo RS, Lombardi AT, Omachi CY, Rörig LR. 2008. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. Toxicol In Vitro 22: 716–722. [Google Scholar]
  • Machado MD, Soares EV. 2021. Exposure of the alga Pseudokirchneriella subcapitata to environmentally relevant concentrations of the herbicide metolachlor: Impact on the redox homeostasis. Ecotoxicol Environ Safe 207: 111264. [Google Scholar]
  • MacKinney Q. 1941. Absorption of light by chlorophyll solutions. J Biol Chem 140: 315–322. [Google Scholar]
  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. 2016. Effects of pesticides on environment. In: Plant, Soil and Microbes: Volume 1: Implications in Crop Science. Berlin, Germany: Springer, pp. 253–269. [Google Scholar]
  • Majewska M, Harshkova D, Pokora W, Baścik-Remisiewicz A, Tułodziecki S, Aksmann A. 2021. Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicol Environ Safe 208: 111630. [Google Scholar]
  • Marques CR, Pereira R, Antunes SC, Cachada A, Duarte AC, Gonçalves F. 2011. Insitu aquatic bioassessment of pesticides applied on rice fields using a microalga and daphnids. Sci Total Environ 409: 3375–3385. [Google Scholar]
  • Mallick N, Rai LC. 1999. Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper. J Plant Physiol 155: 146–149. [Google Scholar]
  • Munkegaard M, Abbaspoor M, Cedergreen N. 2008. Organophosphorous insecticides as herbicide synergists on the green algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor. Ecotoxicology 17: 29–35. [Google Scholar]
  • Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev Plant Biol 49: 249–279. [Google Scholar]
  • Prasad MNV, Strzałka K. 1999. Impact of heavy metals on photosynthesis. In: Heavy Metal Stress in Plants Germany. Berlin, Heidelberg: Springer, pp. 117–138. [Google Scholar]
  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1–61. [Google Scholar]
  • Schoefs B, Bertrand M. 2005. Chlorophyll biosynthesis − a review. In: Pessarakli M (ed.), Handbook of Photosynthesis, 2nd edn. Boca Raton/London/New York/Singapore: CRC Press Book, pp. 37–54. [Google Scholar]
  • Sehrawat A, Phour M, Kumar R, Sindhu SS. 2021. Bioremediation of pesticides: an eco-friendly approach for environment sustainability. In: Microbial Rejuvenation of Polluted Environment. Singapore: Springer, pp. 23– 84. [Google Scholar]
  • Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F. 1994. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35: 561–565. [Google Scholar]
  • Silva V, Mol HG, Zomer P, Tienstra M, Ritsema CJ, Geissen V. 2019. Pesticide residues in European agricultural soils–a hidden reality unfolded. Sci Total Environ 653: 1532–154. [Google Scholar]
  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT. 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837–2847. [Google Scholar]
  • Solomon KR. 1997. Advances in the evaluation of the toxicological risks of herbicides to the environment. In: Congresso brasileiro da ciência das plantas daninhas, 21. Caxambu: SBCPD, pp. 163–172. [Google Scholar]
  • Surosz W, Palinska KA. 2004. Effects of heavy-metal stress on cyanobacterium Anabaena flos-aquae. Arch Environ Contam Toxicol 48: 40–48. [Google Scholar]
  • Teisseire H, Vernet G. 2001. Effects of the fungicide folpet on the activities of antioxidative enzymes in duckweed (Lemna minor). Pest Biochem Physiol 69: 112–117. [Google Scholar]
  • Tomé RG. 1996. Estudio de diversas tecnicas agronomicas en relacion con las cianobacterias fijadoras de n. En el cultivo del arroz. Doctoral dissertation, Universitat de València. [Google Scholar]
  • Tunca H, Hödük K, Köçkar F, Doğru A, Sevindik TO. 2021. Effects of two synthetic pyrethroids on Arthrospira platensis Gomont growth and antioxidant parameters. Acta Bot Croat 80: (in press). [Google Scholar]
  • Urso ML, Clarkson PM. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189: 41–54. [Google Scholar]
  • Verma S, Dubey RS. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164: 645–655. [Google Scholar]
  • Wang SY, Jiao HJ, Faust M. 1991. Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Physiol Plant 82: 231–236. [Google Scholar]
  • Wang W, Jiang M, Sheng Y. 2021. Glyphosate accelerates the proliferation of Microcystis aeruginosa, a dominant species in cyanobacterial blooms. Environ Toxicol Chem 40: 342–351. [Google Scholar]
  • Weimberg R. 1987. Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plantarum 70: 381–388. [Google Scholar]
  • Znad H, Al Ketife AM, Judd S, AlMomani F, Vuthaluru HB. 2018. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol Eng 110: 1–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.