Free Access
Issue |
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/limn/2020026 | |
Published online | 13 November 2020 |
- Amemiya Y, Nakayama O. 1984. The chemical composition and metal adsorption capacity of the sheath materials isolated from Microcystis, Cyanobacteria. Jpn J Limnol 45: 187–193. [CrossRef] [Google Scholar]
- Basuvaraj M, Fein J, Liss SN. 2015. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Water Res 82: 104–117. [CrossRef] [PubMed] [Google Scholar]
- Bi X, Yan R, Li F, Dai W, Jiao K, Zhou Q, Liu Q. 2016. Sequestration and distribution characteristics of Cd (II) by Microcystis aeruginosa and its role in colony formation. Biomed Res Int 2016 . [Google Scholar]
- Brunberg AK, Blomqvist P. 2002. Benthic overwintering of Microcystis colonies under different environmental conditions. J Plankton Res 24: 1247–1252. [Google Scholar]
- De Philippis R, Vincenzini M. 1998. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22: 151–175. [Google Scholar]
- Deng J, Qin B, Paerl HW, Zhang Y, Ma J, Chen Y. 2014. Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshw Biol 59: 1076–1085. [Google Scholar]
- Dervaux J, Mejean A, Brunet P. 2015. Irreversible collective migration of cyanobacteria in eutrophic conditions. PLoS One 10: e0120906. [CrossRef] [PubMed] [Google Scholar]
- Duan Z, Tan X, Parajuli K, Upadhyay S, Zhang D, Shu X, Liu Q. 2018. Colony formation in two Microcystis morphotypes: effects of temperature and nutrient availability. Harmful Algae 72: 14–24. [Google Scholar]
- Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8, 623. [CrossRef] [PubMed] [Google Scholar]
- Guillard R, Lorenzen C. 1972. Yellow‐green algae with chlorophyllide c. J Phycol 8: 10–14. [Google Scholar]
- Hahn MW, Lünsdorf H, Janke L. 2004. Exopolymer production and microcolony formation by planktonic freshwater bacteria: defence against protistan grazing. Aquat Microb Ecol 35: 297–308. [Google Scholar]
- Kromkamp J, Botterweg J, Mur LR. 1988. Buoyancy regulation in Microcystis aeruginosa grown at different temperatures. FEMS Microbiol Lett 53: 231–237. [Google Scholar]
- Li M, Zhu W, Gao L. 2014. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environ Manage 53: 947–958. [CrossRef] [PubMed] [Google Scholar]
- Liu F, Putnam A, Jankowsky E. 2008. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci U S A 105: 20209–20214. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Huang Q, Qin B. 2018. Characteristics and roles of Microcystis extracellular polymeric substances (EPS) in cyanobacterial blooms: a short review. J Freshwat Ecol 33: 183–193. [CrossRef] [Google Scholar]
- Liu X, Sheng G, Luo H, Zhang F, Yuan S, Xu J, Zeng RJ, Wu J, Yu H. 2010. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ Sci Technol 44: 4355–4360. [Google Scholar]
- Mimmack M, Gallagher M, Pearce S, Hyde S, Booth I, Higgins C. 1989. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. Proc Natl Acad Sci U S A 86: 8257–8261. [CrossRef] [PubMed] [Google Scholar]
- Nishikawa S, Kuriyama M. 1974. Nucleic acid as a component of mucilage in activated sludge. J Ferment Technol . [Google Scholar]
- Nishiwaki R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H. 1992. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118: 420–424. [CrossRef] [PubMed] [Google Scholar]
- Omori K, Datta T, Amano Y, Machida M. 2019. Effects of different types of extracellular polysaccharides isolated from cyanobacterial blooms on the colony formation of unicellular Microcystis aeruginosa . Environ Sci Pollut Res 26: 3741–3750. [CrossRef] [Google Scholar]
- Otten T, Xu H, Qin B, Zhu G, Paerl H. 2012. Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: implications for water quality management. Environ Sci Technol 46: 3480–3488. [Google Scholar]
- Otten TG, Paerl HW. 2011. Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in Lake Taihu, China. Microb Ecol 62: 907–918. [Google Scholar]
- Park HD, Watanabe MF, Harada KI, Nagai H, Suzuki M, Watanabe M, Hayashi H. 1993. Hepatotoxin (microcystin) and neurotoxin (anatoxin‐a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Nat Toxins 1: 353–360. [Google Scholar]
- Pradhan S, Rai L. 2001. Biotechnological potential of Microcystis sp. in Cu, Zn and Cd biosorption from single and multimetallic systems. BioMetals 14: 67–74. [CrossRef] [PubMed] [Google Scholar]
- Preston T, Stewart W, Reynolds C. 1980. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature 288: 365–367. [Google Scholar]
- Qu F, Liang H, Wang Z, Wang H, Yu H, Li G. 2012. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms. Water Res 46: 1490–1500. [CrossRef] [PubMed] [Google Scholar]
- Sakurai S, Omori K, Amano Y, Machida M. 2019. Removal of Microcystis blooms using enhanced colony formation and buoyancy by controlling extracellular polysaccharides and cation concentrations. Int J Environ Sci Technol 16: 4793–4802. [CrossRef] [Google Scholar]
- Sato M, Amano Y, Machida M, Imazeki F. 2017. Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution. Limnology 18: 111–119. [Google Scholar]
- Sigee D. 2005. Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. John Wiley & Sons. [Google Scholar]
- Takamura N, Iwakuma T, Yasuno M. 1985. Photosynthesis and primary production of Microcystis aeruginosa Kütz. in Lake Kasumigaura. J Plankton Res 7: 303–312. [Google Scholar]
- Tan X, Shu X, Duan Z, Parajuli K. 2019. Two types of bound extracellular polysaccharides and their roles in shaping the size and tightness of Microcystis colonies. J Appl Phycol 1–8. [Google Scholar]
- Visser PM, Ibelings BW, Mur LR. 1995. Autunmal sedimentation of Microcystis spp. as result of an increase in carbohydrate ballast at reduced temperature. J Plankton Res 17: 919–933. [Google Scholar]
- Walsby A. 1994. Gas vesicles. Microbiol Rev 58: 94–144. [PubMed] [Google Scholar]
- Wang Y, Zhao J, Li J, Li S, Zhang L, Wu M. 2011. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa . Curr Microbiol 62: 679–683. [CrossRef] [PubMed] [Google Scholar]
- Waterbury JB, Stanier RY. 1981. Isolation and growth of cyanobacteria from marine and hypersaline environments. The Prokaryotes , 221–223. [CrossRef] [Google Scholar]
- Wei K, Amano Y, Machida M, Asukabe H, Harada K. 2018. Effects of light and potassium ion on buoyancy regulation with gas vesicle in a Cyanobacterium Microcystis aeruginosa NIES-843. Water, Air, Soil Pollut 229: 352. [CrossRef] [Google Scholar]
- Wei K, Jung S, Amano Y, Machida M. 2019. Control of the buoyancy of Microcystis aeruginosa via colony formation induced by regulating extracellular polysaccharides and cationic ions. SN Appl Sci 1: 1573. [Google Scholar]
- Wingender J, Neu TR, Flemming H-C. 1999. What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Springer. [CrossRef] [Google Scholar]
- Xu H, Yu G, Jiang H. 2013. Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere 93: 75–81. [PubMed] [Google Scholar]
- Ye H, Yuan X, Ge M, Li J, Sun H. 2010. Water chemistry characteristics and controlling factors in the northern rivers in the Taihu Basin. Ecol Environ Sci 19: 23–27. [Google Scholar]
- Zhao L, Lu L, Li M, Xu Z, Zhu W. 2011. Effects of Ca and Mg levels on colony formation and EPS content of cultured M. aeruginosa . Procedia Environ Sci 10: 1452–1458. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.