Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 29
Number of page(s) 7
DOI https://doi.org/10.1051/limn/2020027
Published online 15 December 2020
  • Allen DC, Vaughn CC. 2009. Burrowing behavior of freshwater mussels in experimentally manipulated communities. J N Am Benthol Soc 28: 93–100. [CrossRef] [Google Scholar]
  • Allen DC, Galbraith HS, Vaughn CC, Spooner DE. 2013. A tale of two rivers: Implications of water management practices for mussel biodiversity outcomes during droughts. Ambio 42: 881–891. [CrossRef] [Google Scholar]
  • Barnhart MC. 2006. Buckets of muckets: a compact system for rearing juvenile freshwater mussels. Aquaculture 254: 227–233. [CrossRef] [Google Scholar]
  • Bartsch MR, Waller DL, Cope WG, Gutreuter S. 2000. Emersion and thermal tolerances of three species of unionid mussels: survival and behavioral effects. J Shellfish Res 19: 233–240. [Google Scholar]
  • Bogan AE. 2008. Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia 595: 139–147. [Google Scholar]
  • Boyden C. 1972. The behaviour, survival and respiration of the cockles Cerastoderma Edule and C. Glaucum in air. Mar Biol Assoc U.K . 52: 661–680. [CrossRef] [Google Scholar]
  • Byrne RA, McMahon RF. 1994. Behavioral and physiological responses to emersion in freshwater bivalves. Amer Zool 34: 194–204. [CrossRef] [Google Scholar]
  • Byrne R, McMahon RF, Dietz TH. 1988. Temperature and relative-humidity effects on aerial exposure tolerance in the fresh-water bivalve Corbicula fluminea . Biol Bull 175: 253–260. [CrossRef] [Google Scholar]
  • Byrne R, Gnaiger R, Mcmahon R, Dietz T. 1990. Behavioral and metabolic responses to emersion and subsequent reimmersion in the freshwater bivalve Corbicula fluminea . Biol Bull 178: 251–259. [CrossRef] [PubMed] [Google Scholar]
  • Chang P, Chang W, Shih C, Liu D, Lee Y. 2017. A study of the growth and burrowing ability for the environmentally friendly cultured freshwater clam Corbicula fluminea . Aquac Res 48: 3004–3012. [CrossRef] [Google Scholar]
  • Chmist J, Szoszkiewicz K, Drożdżyński D. 2019. Behavioural responses of Unio tumidus freshwater mussels to pesticide contamination. Arch Environ Contam Toxicol 77: 432–442. [CrossRef] [PubMed] [Google Scholar]
  • Coleman N. 1973. The oxygen consumption of Mytilus edulis in air. Comp Biochem Physiol Part A Mol Integr Physiol 45: 393–402. [CrossRef] [Google Scholar]
  • Collas FP, Koopman KR, Hendriks AJ, van der Velde G, Verbrugge LN. Leuven RS. 2014. Effects of desiccation on native and non‐native molluscs in rivers. Freshw Biol 59: 41–55. [CrossRef] [Google Scholar]
  • Crespo D, Dolbeth M, Leston S et al. 2015. Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability. Biol Invasions 17: 2087–2101. [CrossRef] [Google Scholar]
  • Dietz T. 1974. Body fluid composition and aerial oxygen consumption in the freshwater mussel, Ligumia subrostrata (Say): effects of dehydration and anoxic stress. Biol Bull 147: 560–572. [CrossRef] [PubMed] [Google Scholar]
  • Douda K. 2015. Host-dependent vitality of juvenile freshwater mussels: implications for breeding programs and host evaluation. Aquaculture 445: 5–10. [CrossRef] [Google Scholar]
  • Ferreira-Rodríguez N, Pardo I. 2016. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats. Estuar Coast Shelf Sci . 176: 110–116. [CrossRef] [Google Scholar]
  • Gagnon PM, Golladay SW, Michener WK, Freeman MC. 2004. Drought responses of freshwater mussels (Unionidae) in coastal plain tributaries of the Flint River basin, Georgia. J Freshw Ecol 19: 667–679. [CrossRef] [Google Scholar]
  • Galbraith HS, Spooner DE, Vaughn CC. 2010. Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biol Conserv 143: 1175–1183. [CrossRef] [Google Scholar]
  • Galbraith HS, Blakeslee CJ, Lellis WA. 2015. Behavioral responses of freshwater mussels to experimental dewatering. Freshw Sci 34: 42–52. [CrossRef] [Google Scholar]
  • Gatenby CM, Neves RJ, Parker BC. 1996. Influence of sediment and algal food on cultured juvenile freshwater mussels. J North Am Benthol Soc 15: 597–609. [CrossRef] [Google Scholar]
  • Golladay SW, Gagnon P, Kearns M, Battle JM, Hicks DW. 2004. Response of freshwater mussel assemblages (Bivalvia: Unionidae) to a record drought in the Gulf Coastal Plain of southwestern Georgia. J North Am Benthol Soc 23: 494–506. [CrossRef] [Google Scholar]
  • Gough HM, Gascho Landis AM, Stoeckel JA. 2012. Behaviour and physiology are linked in the responses of freshwater mussels to drought. Freshw Biol 57: 2356–2366. [CrossRef] [Google Scholar]
  • Graf DL, Cummings KS. 2007. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). J Molluscan Stud 73: 291–314. [CrossRef] [Google Scholar]
  • Guareschi S, Wood PJ. 2020. Exploring the desiccation tolerance of the invasive bivalve Corbicula fluminea (Müller 1774) at different temperatures. Biol Invasions 22: 2813–2824. [CrossRef] [Google Scholar]
  • Haag WR. 2012. North American Freshwater Mussels: Ecology, Natural History and Conservation. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Haag WR, Warren ML. 2008. Effects of severe drought on freshwater mussel assemblages. Trans Am Fish Soc 137: 1165–1178. [CrossRef] [Google Scholar]
  • Hicks DW, McMahon RF. 2003. Temperature and relative humidity effects on water loss and emersion tolerance of Perna perna (L.) (Bivalvia: Mytilidae) from the Gulf of Mexico. Bull Mar Sci 72: 135–150. [Google Scholar]
  • Holland DF. 1991. Prolonged emersion tolerance in freshwater mussels (Bivalvia: Unionidae): interspecific comparison of behavioral strategies and water loss rates. Master's thesis, University of Texas at Arlington. [Google Scholar]
  • Johnson PM, Liner AE, Golladay SW, Michener WK. 2001. Effects of drought on freshwater mussels and instream habitat in Coastal Plain tributaries of the Flint River, southwest Georgia (July–October, 2000). Nature Conservancy, Apalachicola, Florida. [Google Scholar]
  • Kamburska L, Lauceri R, Beltrami M, Boggero A, Cardeccia A, Guarneri I, Riccardi N. 2013. Establishment of Corbicula fluminea (OF Müller, 1774) in Lake Maggiore: a spatial approach to trace the invasion dynamics. BioInvasions Rec 2: 105–117. [CrossRef] [Google Scholar]
  • Kaplan EL, Meier P. 1958. Nonparametric estimation from incomplete observations. J Am Stat Assoc 53: 457–481. [CrossRef] [Google Scholar]
  • Labbe TR, Fausch KD. 2000. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol Appl 10: 1774–1791. [CrossRef] [Google Scholar]
  • Leuven RSEW, Collas FPL, Koopman KR, Matthews J, Van der Velde G. 2014. Mass mortality of invasive zebra and quagga mussels by desiccation during severe winter conditions. Aquat Invasions 9: 243–252. [CrossRef] [Google Scholar]
  • Lopes-Lima M, Seddon MB. 2014. Unio terminalis. The IUCN Red List of Threatened Species 2014: e.T164866A42466771 (accessed October 6, 2020) [Google Scholar]
  • Lytle DA, Olden JD, McMullen LE. 2008. Drought-escape behaviors of aquatic insects may be adaptations to highly variable flow regimes characteristic of desert rivers. Southwestern Nat 53: 399–402. [CrossRef] [Google Scholar]
  • Magoulick DD, Kobza RM. 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater Biol 48: 1186–1198. [CrossRef] [Google Scholar]
  • McMahon RF. 1988. Respiratory response to periodic emergence in intertidal molluscs. Am Zool 28: 97–114. [CrossRef] [Google Scholar]
  • McMahon RF, Williams CJ. 1984. A unique respiratory adaptation to emersion in the introduced asian freshwater clam Corbicula Fluminea (Müller) (Lamellibranchia: Corbiculacea), Physiol Zool 57: 274–279. [CrossRef] [Google Scholar]
  • McMahon RF, Bogan AE. 2001. Mollusca: Bivalvia. In: Thorpe J.H. and Covich A.P. (eds.), Ecology and Classification of North American Freshwater Invertebrates, 2nd edn. Academic Press, pp. 331– 429. [CrossRef] [Google Scholar]
  • Mitchell ZA, McGuire J, Abel J, Hernandez BA, Schwalb AN. 2018. Move on or take the heat: can life history strategies of freshwater mussels predict their physiological and behavioural responses to drought and dewatering? Freshwater Biol 63: 1579–1591. [CrossRef] [Google Scholar]
  • Nakano M. 2018. Survival duration of six unionid mussel species under experimental emersion. Hydrobiologia 809: 111–120. [CrossRef] [Google Scholar]
  • Newton TJ, Zigler SJ, Gray BR. 2015. Mortality, movement and behaviour of native mussels during a planned water-level drawdown in the Upper Mississippi River. Freshwater Biol 60: 1–15. [CrossRef] [Google Scholar]
  • Nicastro KR, Zardi GI, McQuaid CD, Stephens L, Radloff S, Blatch GL. 2010. The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels. BMC Ecol . 10: 17. [CrossRef] [PubMed] [Google Scholar]
  • Paukstis GL, Tucker JK, Bronikowski AM, Janzen FJ. 1999. Survivorship of aerially exposed zebra mussels (Dreissena polymorpha) under laboratory conditions. J Freshw Ecol 14: 511–517. [CrossRef] [Google Scholar]
  • Sadok S, Uglow RF, Haswell SJ. 1999. Some aspects of nitrogen metabolism in Mytilus edulis: effects of aerial exposure. Mar Biol 135: 297–305. [CrossRef] [Google Scholar]
  • Serdar S. 2018. Growth of the Asian clam Corbicula fluminea (Müller, 1774) cultured in çine creek, Aydin, Turkey. J Shellfish Res 37: 491–496. [CrossRef] [Google Scholar]
  • Shick JM, Widdows J, Gnaiger E. 1988. Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. Amer Zool 28: 161–181. [CrossRef] [Google Scholar]
  • Soil Science Division Staff. 2017. Soil survey manual. In: Ditzler C, Scheffe K, and Monger H.C. (eds.), USDA Handbook 18. Washington, D.C.: Government Printing Office, p. 125. [Google Scholar]
  • Sousa R, Antunes C, Guilhermino L. 2008. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Ann Limnol Int J Lim 44: 85–94. [CrossRef] [Google Scholar]
  • Sousa R, Varandas S, Teixeira A, Ghamizi M, Froufe E, Lopes-Lima M. 2016. Pearl mussels (Margaritifera marocana) in Morocco: conservation status of the rarest bivalve in African fresh waters. Sci Total Environ 547: 405–412. [CrossRef] [PubMed] [Google Scholar]
  • Sousa R, Ferreira A, Carvalho F, Lopes-Lima M, Varandas S, Teixeira A. 2018. Die-offs of the endangered pearl mussel Margaritifera margaritifera during an extreme drought. Aquat Conserv 28: 1244–1248. [CrossRef] [Google Scholar]
  • Taylor AC, Brand AR. 1975. Effects of hypoxia and body size on the oxygen consumption of the bivalve Arctica islandica (L.). J Exp Mar Biol 19: 187–196. [CrossRef] [Google Scholar]
  • Toomey MB, McCabe D, Marsden JE. 2002. Factors affecting the movement of adult zebra mussels (Dreissena polymorpha). J North Am Benthol Soc 21: 468–475. [CrossRef] [Google Scholar]
  • Vaughn CC, Atkinson CL, Julian JP. 2015. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecol Evol 5: 1291–1305. [CrossRef] [PubMed] [Google Scholar]
  • Widdows J, Bayne BL, Livingstone DR, Newell RIE, Donkin P. 1979. Physiological and biochemical responses of bivalve mollusks to exposure to air. Comp Biochem Phys A 62: 301–308. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.