Free Access
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 6
Number of page(s) 13
Published online 17 April 2020
  • Adrian R, O'Reilly CM, Zagarese H, et al. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54: 2283–2297. [CrossRef] [PubMed] [Google Scholar]
  • APHA–AWWA–WEF (American Public Health Association–American Water Works Association–Water Environment Federation). 2000. Standard methods for the examination of water and wastewater (18th ed.). APHA–AWWA–WEF: Washington, DC. [Google Scholar]
  • Alcantara EH, Stech JL, Lorenzzetti JA, et al. 2010. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sens Environ 114: 2651–2665. [Google Scholar]
  • Bonansea M, Rodriguez MC, Pinotti L, Ferrero S. 2015. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens Environ 158: 28–41. [Google Scholar]
  • Brezonik P, Kevin D, Bauer M, Bauer M. 2005. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv Manag 21: 373–382. [CrossRef] [Google Scholar]
  • Behrouzirad B. 2007. Wetlands of Iran, Tehran, Iran. [Google Scholar]
  • Boynton WR, Kemp WM, Keefe CW. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In: V.S. Kennedy (ed.), Estuarine Comparisons. New York: Academic Press, p. 69–90. DOI: 10.1016/B978-0-12-404070-0.50011-9. [CrossRef] [Google Scholar]
  • Carpenter SR. 2005. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl Acad Sci 102: 10002–10005. [CrossRef] [Google Scholar]
  • Covino T, Golden HE, Li HY, Tang J. 2009. Aquatic carbon-nutrient dynamics as emergent properties of hydrological, biogeochemical, and ecological interactions: scientific advances. Water Resour Res 54:7138–7142. [Google Scholar]
  • Chander G, Markham BL. 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 41: 2674–2677. [Google Scholar]
  • Chao Rodríguez Y, Anjoumi A, Domínguez Gómez JA, Rodríguez Pérez D, Rico E. 2014. Using Landsat image time series to study a small water body in Northern Spain. Environ Monitor Assess 186: 3511–3522. [Google Scholar]
  • Chen J, Quan W. 2012. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE J Stars 5: 273–280. [Google Scholar]
  • Chen ZH, Mao ZH, Chen JY. 2011. Coastline change monitoring using 4 periods' remote Sensing data in Zhejiang Province from 1986 to 2009. Appl Remote Sens Technol 26: 68–73. [Google Scholar]
  • Dörnhöfer K, Oppelt N. 2016. Remote sensing for lake research and monitoring − recent advances. Ecol Indic 64: 105–122. [Google Scholar]
  • Ebrahimi E. 2006. Using GIS Techniques in Aquatic Environment Studies: Developing Databases and Map for Choghakhor Wetland. University project research, No, 2887, Department of Natural Resources, Isfahan University of Technology, 80 p. [Google Scholar]
  • Ebrahimi S, Moshari M. 2006. Evaluation of the Choghakhor Wetland status with the emphasis on environmental management problems. Publications of the Institute of Geophysics. Polish Acad Sci E-6 (390) 8pp. [Google Scholar]
  • Esmaeili AR. 2012. Trophic Status of Choghakhor Wetland, Thesis of Master of Science, Department of Natural Resources, Isfahan University of Technology, 87 p. [Google Scholar]
  • El Masri B, Rahman AF. 2008. Estimation of water quality parameters for Lake Kemp Texas derived from remotely sensed data. Available online at [Google Scholar]
  • Fazelpoor K, Dadolahi Sohrab A, Elmizadeh H, Asgari HM, Khazaei SH. 2015. Evaluating the Efficiency of the Use of Satellite Images in Measuring the Sea Surface Temperature and Carbon Fixation in the Persian Gulf. Tech J Eng Appl Sci 5: 242–254. [Google Scholar]
  • Filstrup CT, Downing JA. 2017. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters 7: 385–400. [Google Scholar]
  • Greb SR, Martin AA, Chipman JW. 2009. Water clarity monitoring of lakes in Wisconsin, USA using Landsat, in Proceedings of 33rd International Symposium of Remote Sensing of the Environment. Stresa, Italy. [Google Scholar]
  • Hicks BJ, Stichbury GA, Brabyn LK, Allan MG, Ashraf S. 2013. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ Monitor Assess 185: 7245–7261. [CrossRef] [Google Scholar]
  • Iqbal M, Billah M, Haider N, Islam Sh, Payel HR. 2017. Seasonal distribution of phytoplankton community in a subtropical estuary of the south-eastern coast of Bangladesh. Zool Ecol 27(3-4), [Google Scholar]
  • Ji L, Zhang L, Wylie B. 2009. Analysis of dynamic thresholds for the normalized difference water index. Photogram Eng Remote Sens 75: 1307–1317. [CrossRef] [Google Scholar]
  • Kang K, Kim SH, Kim D, Cho YK, Lee SH. 2014. Comparison of coastal sea surface temperature derived from ship, air, and space-borne thermal infrared systems. Int Geosci Remote Sens Symp: 4419–4422. [Google Scholar]
  • Keddy PA. 2010. Wetland Ecology: Principles and conservation. Cambridge University Press. [CrossRef] [Google Scholar]
  • Kufel L, Prejs A, Rybak JI (Eds.). 1997. Shallow Lakes '95: Trophic Cascades in Shallow Freshwater and Brackish Lakes (Developments in Hydrobiology) Dordrecht: Springer, Vol. 119 [CrossRef] [Google Scholar]
  • Lee Z, Shang S, Qi L, Yan J, Lin G. 2016. A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Rem Sens Environ 177: 101–106. [CrossRef] [Google Scholar]
  • Matthews MW. 2011. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32: 6855–6899. [Google Scholar]
  • McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17: 1425–1432. [Google Scholar]
  • Murrell MC, Hagy JD, Lores EM, Greene RM. 2007. Phytoplankton production and nutrient distributions in a subtropical estuary: importance of freshwater flow. Estuar Coasts 30: 390–402. [CrossRef] [Google Scholar]
  • Odermatt D, Gitelson A, Brando VE, Schaepman M. 2012. Review of constituentretrieval in optically deep and complex waters from satellite imagery. Rem Sens Environ 118: 116–126. [CrossRef] [Google Scholar]
  • Olmanson LG, Bauer ME, Brezonik PL. 2008. A 20-year Landsat water clarity census of Minnesota's 10, 000 lakes. Remote Sens Environ 112: 4086–4097. [Google Scholar]
  • Ogilvie A, Belaud G, Massuel S, Mulligan M, Le Goulven P, Calvez R. 2018. Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series. Hydrol Earth Syst Sciences 22: 4349–4380. [CrossRef] [Google Scholar]
  • Patra P, Dubey SK, Kumar Trivedi R, Kumar Sahu S, Keshari Rout S. 2016. Estimation of Chlorophyll a concentration and trophic states for an inland lake from Landsat 8 OLI data: a case of Nalban Lake of East Kolkata Wetland, India. doi: 10.20944/preprints201608.0149.v1. [Google Scholar]
  • Pereira HC, Allott N, Coxon C. 2010. Are seasonal lakes as productive as permanent lakes? A case study from Ireland. Can J Fish Aquatic Sci 2010: 1291–1302. [CrossRef] [Google Scholar]
  • Primpas I, Tsirtsis G, Karydis M, Kokkoris GD. 2010. Principal component analysis: development of a multivariate index for assessing eutrophication according to the european water framework directive. Ecol Indic 10: 178–183. [Google Scholar]
  • Ramsar Sites Information Service (RSIS). 2010. Choghakhor Wetland. [Google Scholar]
  • Ryan PP, Geoffrey JH, Gang C. 2012. How wetland type and area differ through scale: a geobia case study in Alberta's Boreal Plains. Remote Sens Environ 117: 135–145. [Google Scholar]
  • Samadi J. 2015. Survey of spatial-temporal impact of quantitative and qualitative of land use wastewaters on Choghakhor wetland pollution using IRWQI index and statistical methods. Iran Water Resour Res 11: 157–191. [Google Scholar]
  • Senay GB, Shafique NA, Autrey BC, Fulk F, Cormier SM. 2001. The selection of narrow wavebands for optimizing water quality monitoring on the Great Miami River, Ohio using Hyperspectral Remote Sensor Data. J Spat Hydrol 1: 1–22. [Google Scholar]
  • Shutler JD, Land PE, Smyth TJ, Groom SB. 2007. Extending the MODIS 1 km ocean colour atmospheric correction to the MODIS 500 m bands and 500 m chlorophyll-a estimation towards coastal and estuarine monitoring. Rem Sens Environ 107: 521–532. [CrossRef] [Google Scholar]
  • Sima S, Ahmadalipour A, Tajrishy M. 2013. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Rem Sens Environ 136: 374–385. [CrossRef] [Google Scholar]
  • Simon RN, Tormosa T, Danisb PA. 2014. Retrieving water surface temperature from archive LANDSAT thermal infrared data: application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs. Int J Appl Earth Observ Geoinfor 30: 247–250. [CrossRef] [Google Scholar]
  • Souchu P, Bec B, Smith VH, et al. 2010. Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can J Fish Aquatic Sci 67: 743–753. [CrossRef] [Google Scholar]
  • Sun D, Hu C, Qiu Z, Cannizzaro JP, Barnes BB. 2014. Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries. Rem Sens Environ 155: 289–302. [CrossRef] [Google Scholar]
  • Stumpf RP, Culver ME, Tester PA, et al. 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae: 147–160. [Google Scholar]
  • Syariza MA, Jaelania LM, Subehie L, Pamungkasb A, Koenhardonoc ES, Sulisetyonod A. 2015. Retrieval of Sea Surface Temperature Over Poteran Island Water of Indonesia with Landsat 8 TIRS Image: A Preliminary Algorithm, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W4, 2015, Joint International Geoinformation Conference, 28–30 October 2015, Kuala Lumpur, Malaysia. [Google Scholar]
  • Urbanskia JA, Wochnaa A, Bubakb I, et al. 2016. Application of Landsat 8 imagery to regional-scale assessment of lakewater quality, Int J Appl Earth Observ Geoinfor 51: 28–36. [CrossRef] [Google Scholar]
  • Wetzel RG. 2001. Limnology: Lake and river ecosystems. San Diego, CA: Academic Press, 3rd ed. p. 1006. [Google Scholar]
  • Yüzügüllü O, Aksoy A. 2011. Determination of Secchi Disc depths in Lake Eymir using remotely sensed data. Proc Social Behav Sci 19: 586–592. [CrossRef] [Google Scholar]
  • Zoriasatein N, Jalili S, Poor F. 2013. Evaluation of ecological quality status with the trophic index (TRIX) values in coastal area of Arvand, northeastern of Persian Gulf, Iran. World J Fish Mar Sci 5: 257–262. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.