Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 3
Number of page(s) 9
DOI https://doi.org/10.1051/limn/2020002
Published online 24 March 2020
  • Anderson MJ, Crist TO, Chase JM, et al. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14: 19–28. [Google Scholar]
  • APHA. 2012. Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association. [Google Scholar]
  • Arnaiz OL, Wilson AL, Watts RJ, Stevens MM. 2011. Influence of riparian condition on aquatic macroinvertebrate communities in an agricultural catchment in South-eastern Australia. Ecol Res 26: 123–131. [Google Scholar]
  • Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19: 134–143. [Google Scholar]
  • Bergamin RS, Bastazini VAG, Vélez-Martin E, et al. 2017. Linking beta diversity patterns to protected areas: lessons from the Brazilian Atlantic Rainforest. Biodivers Conserv 26: 1557–1568. [Google Scholar]
  • Bertaso TRN, Spies MR, Kotzian CB, Flores MLT. 2015. Effects of forest conversion on the assemblages structure of aquatic insects in subtropical regions. Rev Bras Entomol 59: 43–49. [CrossRef] [Google Scholar]
  • Biasi C, Milesi SV, Restello RM, Hepp LU. 2008. Ocorrência e distribuição de insetos aquáticos (Ephemeroptera, Plecoptera, Trichoptera) em riachos de Erechim/RS. Perspectiva 32: 171–183. [Google Scholar]
  • Bruno D, Belmar O, Sachez-Fernandez D, Guareschi S, Millan A, Velasco J. 2014. Responses of mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecol Indic 45: 456–464. [Google Scholar]
  • Bu H, Meng W, Zhang Y, Wan J. 2014. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol Indic 41: 187–197. [Google Scholar]
  • Cook RR. 1995. The relationship between nested subsets, habitat subdivision, and species diversity. Oecologia 101: 204–210. [Google Scholar]
  • Copatti CE, Ross M, Copatti BR, Seibel LF. 2013. Bioassessment using benthic macroinvertebrates of the water quality in the Tigreiro river, Jacuí Basin. Acta Sci Biol 35: 521–529. [Google Scholar]
  • Egler M, Buss DF, Moreira JC, Baptista DF. 2012. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil. Braz J Biol 72: 437–443. [Google Scholar]
  • Ferreira WR, Hepp LU, Ligeiro R, et al. 2017. Partitioning taxonomic diversity of aquatic insect assemblages functional feeding groups in neotropical savanna headwater streams. Ecol Indic 72: 365–373. [Google Scholar]
  • Gianuca AT, Declerck SAJ, Lemmens P, De Meester L. 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology 98: 525–533. [Google Scholar]
  • Gimenez BCG, Lansac-Tôha FA, Higuti J. 2015. Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams. Braz J Biol 75: 52–59. [Google Scholar]
  • Hamada N, Nessimian JL, Querino RB. 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA Manaus. [Google Scholar]
  • Heino J, Mykrä H, Muotka T. 2009. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Diversity Distrib 15: 198–206. [CrossRef] [Google Scholar]
  • Heino J, Mykrä H, Rintala J. 2010. Assessing patterns of nestedness in stream insect assemblages along environmental gradients. Ecoscience 17: 345–355. [CrossRef] [Google Scholar]
  • Hooke RL, Martín-Duque JF, Pedraza J. 2012. Land transformation by humans: a review. GSA Today 22: 4–10. [Google Scholar]
  • Hu G, Feeley KF, Wu J, Xu G, Yu M. 2011. Determinants of plant species richness and patterns of nestedness in fragmented landscapes: evidence from land-bridge islands. Landsc Ecol 26: 1405–1417. [Google Scholar]
  • Hylander K, Nilsson C, Gunnar Jonsson B, Göthner T. 2005. Differences in habitat quality explain nestedness in a land snail metacommunity. Oikos 108: 351–361. [Google Scholar]
  • Jackson DA. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214. [Google Scholar]
  • Kasangaki A, Chapman LJ, Balirwa J. 2008. Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshw Biol 53: 681–697. [Google Scholar]
  • Korhonen JJ, Soininen J, Hillebrand H. 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91: 508–517. [Google Scholar]
  • Merovich GT, Petty JT. 2010. Continuous response of benthic macroinvertebrate assemblages to a discrete disturbance gradient: consequences for diagnosing stressors. J N Am Benthol Soc 29: 1241–1257. [CrossRef] [Google Scholar]
  • Milesi SV, Melo AS. 2014. Conditional effects of aquatic insects of small tributaries on mainstream assemblages: position within drainage network matters. Can J Fish Aquat Sci 71: 1–9. [Google Scholar]
  • Mugnai R, Nessimian JL, Baptista DF. 2010. Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Technical Books Editora, Rio de Janeiro. 174p. [Google Scholar]
  • Munn M, Frey J, Tesoriero A. 2010. The influence of nutrients and physical habitat in regulating algal biomass in agricultural streams. Environ Manag 45: 603–615. [CrossRef] [Google Scholar]
  • Nessimian JL, Venticinque EM, Zuanon J, et al. 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614: 117–131. [Google Scholar]
  • Oksanen J, Blanchet FG, Kindt R, et al. 2017. Vegan: community ecology package. https://cran.r-project.org, https://github.com/vegandevs/vegan [Google Scholar]
  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM. 2015. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 8: 242–260. [CrossRef] [Google Scholar]
  • Ongaratto R, Loureiro RC, Restello RM, Hepp LU. 2018. Effects of land use and limnological variables on the dissimilarity of common and rare aquatic insects in Atlantic Forest streams. Rev Biol Trop 66: 1223–1231. [Google Scholar]
  • Pes AMO, Hamada N, Nessimian JL. 2005. Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Rev Bras Entomol 49: 181–204. [CrossRef] [Google Scholar]
  • Pinha GD, Tramonte RP, Bilia CG, Takeda AM. 2017. Differences in environmental heterogeneity promote the nestedness of Chironomidae metacommunity in Neotropical floodplain lakes. Acta Limnol Bras 29: e118. [CrossRef] [Google Scholar]
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [Google Scholar]
  • Rhodes AL, Newton RM, Pufall A. 2001. Influences of land use on water quality of a diverse New England watershed. Environ Sci Technol 35: 3640–3645. [CrossRef] [PubMed] [Google Scholar]
  • Riseng CM, Wiley MJ, Black RW, Munn MD. 2011. Impacts of agricultural land use on biological integrity: a causal analysis. Ecol Appl 21: 3128–3146. [Google Scholar]
  • Rocha CFD, Hatano FH, Vrcibradic D, Vansluys M. 2008. Frog species richness, composition and β-diversity in coastal Brazilian restinga habitats. Braz J Biol 68: 101–107. [Google Scholar]
  • Rodríguez‐Gironés MA, Santamaría L. 2006. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J Biogeogr 33: 924–935. [Google Scholar]
  • Rovani IL, Santos JE, Decian VS, Zanin EM. 2019. Assessing naturalness changes resulting from a historical land use in Brazil South Region: an analysis of the 1986–2016 period. J Environ Protec 10: 149–163. [CrossRef] [Google Scholar]
  • Scolar JB, Gilroy JJ, Kunin WE, Edwards DP. 2016. How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31: 67–80. [CrossRef] [PubMed] [Google Scholar]
  • Segura MO, Valente-Neto F, Fonseca-Gessner AA. 2011. Chave de famílias de Coleoptera aquáticos (Insecta) do Estado de São Paulo, Brasil. Biota Neotrop 11: 394–412. [CrossRef] [Google Scholar]
  • Selvakumar C, Sivaramakrishnan KG, Janarthanan S, Arumugam M, Arunachalam M. 2014. Impact of riparian land-use patterns on Ephemeroptera community structure in river basins of the southern Western Ghats, India. Knowl Manag Aquat Ecosyst 412: 1–11. [Google Scholar]
  • Theodoropoulos C, Iliopoulou-Georgudaki J. 2010. Response of biota to land use changes and water and water quality degradation in two medium-sized river basins in southwestern Greece. Ecol Indic 10: 1231–1238. [Google Scholar]
  • Valente-Neto F, Koroiva R, Fonseca-Gessner AA, Roque FO. 2015. The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat Ecol 49: 115–125. [Google Scholar]
  • Vidal-Abarca MRG, Suarez MLA. 2013. Which are, what is their status and what can we expect from ecosystem services provided by Spanish rivers and riparian areas? Biodivers Conserv 22: 2469–2503. [Google Scholar]
  • Whittaker RH. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30: 279–338. [Google Scholar]
  • Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W. 1997. A comparative analysis of nested subset patterns of species composition. Oecologia 113: 1–20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.