Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 4
Number of page(s) 18
DOI https://doi.org/10.1051/limn/2020001
Published online 24 March 2020
  • Alonso M. 1996. Crustacea Branchiopoda. En: Fauna Iberica, vol. 7. Museo Nacional de Ciencias Naturales. Madrid: CSIC, p. 486. [Google Scholar]
  • Amoros C. 1984. Introduction pratique a la systématique des organismes des eaux continentales françaises. 5-Crustacés Cladocères. Bull Société Linnéenne Lyon 4: 72–145. [Google Scholar]
  • Anas MUM, Scott KA, Wissel B. 2015. Environmental filtering of crustacean zooplankton communities in fishless boreal lakes: Expectations and exceptions. J Plankton Res 37: 75–89. [Google Scholar]
  • APHA/AWWA/WEF. 2012. Standard Methods for the Examination of Water and Wastewater. [Google Scholar]
  • APHA, AWWA, WPFC. 1989. Standard methods for the examination of water and wastewater, 17th edn. Washington, DC: American Public Health Association. [Google Scholar]
  • Bell E. 2012. Life at extremes: environments, organisms, and strategies for survival. CAB International. [CrossRef] [Google Scholar]
  • Bellinger EG, Sigee DC. 2015. Freshwater algae: identification, enumeration and use as bioindicators. John Wiley & Sons. [Google Scholar]
  • Bengtsson L. 2012. Classification of Lakes from Origin Processes. In: Bengtsson L, Herschy RW, Fairbridge RW (Eds.), Encyclopedia of Lakes and Reservoirs. Netherlands, Dordrecht: Springer, pp 164–165. [Google Scholar]
  • Benndorf Ju, Kranich J, Mehner T, Wagner A. 2001. Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany). Freshw Biol 46: 199–211. [Google Scholar]
  • Boggero A, Lencioni V. 2006. Macroinvertebrates assemblages of high altitude lakes, inlets and outlets in the southern Alps. Arch für Hydrobiol 165: 37–61. [CrossRef] [Google Scholar]
  • Bouchard K. 2005. Nutrient limitation and top-down, bottom-up controls on phytoplankton in Mirror Lake. Undergrad Ecol Res Reports 1–9 [Google Scholar]
  • Brettum P, Andersen T. 2005. The use of phytoplankton as indicators of water quality. [Google Scholar]
  • Brönmark C, Hansson L-A. 2002. Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29: 290–307. [Google Scholar]
  • Byron ER. 1982. The adaptive significance of calanoid copepod pigmentation: a comparative and experimental analysis. Ecology 63: 1871–1886. [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • Caroni R, Irvine K. 2010. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biol Environ Proc R Irish Acad 110B: 35–53. [CrossRef] [Google Scholar]
  • Carter-Lund H, Lund JWG. 1995. Freshwater algae: Their microscopic world explored. Bristol, England: Biopress Limited. [Google Scholar]
  • Carvalho A, Espinha Marques J, Marques JM, et al. 2012. Contaminação de água subterrânea por substâncias de limpeza da neve em estradas: O caso do sector de Nave de Santo António − Covão do Curral (Serra da Estrela, Centro de Portugal). Comun Geológicas 99: 19–25. [Google Scholar]
  • Catalan J, Camarero L, Felip M, et al. 2006. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25: 551–584. [Google Scholar]
  • Céréghino R, Biggs J, Oertli B, Declerck S. 2008. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6. [Google Scholar]
  • Coronel JS, Declerck S, Brendonck L. 2007. High-altitude peatland temporary pools in Bolivia house a high cladoceran diversity. Wetlands 27: 1166. [CrossRef] [Google Scholar]
  • Cottenie K, Nuytten N, Michels E, De Meester L. 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350. [Google Scholar]
  • D'Itri FM. 1992. Chemical deicers and the environment. Lewis Publishers. [Google Scholar]
  • Dai GZ, Shang JL, Qiu BS. 2012. Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes. Glob Chang Biol 18: 1571–1581. [Google Scholar]
  • Daveau S, da Conceição Coelho M, Costa VG, Carvalho L. (1977) Répartition et rythme des précipitations au Portugal. Memórias do Centro de Estudos Geográficos, Lisboa. [Google Scholar]
  • Daveau S, Ferreira A de B, Ferreira N, Vieira GT. 1997. Novas glaciações acerca da glaciação da Serra da Estrela. Estud do Quaternário 1: 41–51. [CrossRef] [Google Scholar]
  • De Hoyos C, Aldasoro JJ, Toro M, Comín FA. 1998. Specific composition and ecology of chrysophyte flagellates in Lake Sanabria (NW Spain). Hydrobiologia 369/370: 287–295. [Google Scholar]
  • Declerck S, Vanderstukken M, Pals A, et al. 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210. [Google Scholar]
  • Dixit SS, Smol JP, Charles DF, et al. 1999. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can J Fish Aquat Sci 131–152. [Google Scholar]
  • Dokulil M. 1988. Seasonal and spatial distribution of cryptophycean species in the deep, stratifying, alpine lake Mondsee and their role in the food web. Hydrobiologia 161: 185–201. [Google Scholar]
  • Dokulil MT, Teubner K. 2000. Cyanobacterial dominance in lakes. [Google Scholar]
  • Du X, García-Berthou E, Wang Q, et al. 2015. Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat Ecol 49: 199–210. [Google Scholar]
  • Dumnicka E, Galas J. 2002. Factors affecting the distribution of Oligochaeta in small high mountain ponds (Tatra Mts, Poland). Arch fur Hydrobiol 156: 121–133. [CrossRef] [Google Scholar]
  • EPA. 2001. Parameters of Water Quality: Interpretation and Standards. [Google Scholar]
  • Espinha Marques J, Marques JM, Carvalho A, et al. 2019. Groundwater resources in a Mediterranean mountainous region: environmental impact of road de-icing. Sustain Water Resour Manag 5: 305–317. [CrossRef] [Google Scholar]
  • Figueiredo DR, Reboleira ASSP, Antunes SC, et al. 2006. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate Lake. Hydrobiologia 568: 145–157. [Google Scholar]
  • Gardner EM, McKnight DM, Lewis Jr. WM, Miller MP. 2008. Effects of nutrient enrichment on phytoplankton in an alpine lake, Colorado, USA. Arct Antarct Alp Res 40: 55–64. [CrossRef] [Google Scholar]
  • Girdner SF, Larson GL. 1995. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA. J Plankton Res 17: 1731–1755. [Google Scholar]
  • Harding JP, Smith WA. 1974. A key to the British freshwater cyclopid and calanoid copepods: with ecological notes. Freshwater Biological Association. [Google Scholar]
  • Hinden H, Oertli B, Menetrey N, et al. 2005. Alpine pond biodiversity: What are the related environmental variables? Aquat Conserv Mar Freshw Ecosyst 15: 613–624. [CrossRef] [Google Scholar]
  • Hoverman JT, Johnson PTJ. 2012. Ponds and Lakes: a Journey Through the Life Aquatic. Nat Educ Knowl 3: 17. [Google Scholar]
  • Hu SS, Tessier AJ. 1995. Seasonal succession and the strenght of intra- and interspecific competition in a Daphnia assemblage. Ecology 76: 2278–2294. [Google Scholar]
  • INAG IP. 2009a. Manual para a Avaliação da Qualidade Biológica da Água em Lagos e Albufeiras segundo a Directiva Quadro da Água-Protocolo de Amostragem e análise para o Fitoplâncton. Ministério do Ambient do Ordenam do Territ e do Desenvolv Reg Inst da Água, IP. [Google Scholar]
  • INAG IP. 2009b. Critérios para a Classificação do Estado das Massas de Água Superficiais − Rios e Albufeiras. Ministério do Ambient do Ordenam do Territ e do Desenvolv Reg Inst da Água, IP. [Google Scholar]
  • Jacobsen D, Dangles O. 2017. Organisms and diversity patterns at high altitudes. In: Jacobsen D, Dangles O (Eds.), Ecology of High Altitude Waters, 1st edn. New York: Oxford University Press, pp 66–91. [Google Scholar]
  • Jensen TC, Dimante-Deimantovica I, Schartau AK, Walseng B. 2013. Cladocerans respond to differences in trophic state in deeper nutrient poor lakes from southern Norway. Hydrobiologia 715: 101–112. [Google Scholar]
  • Jeppesen E, Jensen JP, Sondergaard M, et al. 2000. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshw Biol 45: 201–218. [Google Scholar]
  • Jeppesen E, Nõges P, Davidson TA, et al. 2011. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297. [Google Scholar]
  • Judd KE, Adams HE, Bosch NS, et al. 2005. A case history: effects of mixing regime on nutrient dynamics and community structure in third sister lake, michigan during late winter and early spring 2003. Lake Reserv Manag 21: 316–329. [CrossRef] [Google Scholar]
  • Kaiblinger C, Anneville O, Tadonleke R, et al. 2009. Central European water quality indices applied to long-term data from peri-alpine lakes: Test and possible improvements. Hydrobiologia 633: 67–74. [Google Scholar]
  • Kamenik C, Schmidt R, Kum G, Psenner R. 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arctic, Antarct Alp Res 33: 404–409. [CrossRef] [Google Scholar]
  • Kamenik C, Szeroczyńska K, Schmidt R. 2007. Relationships among recent Alpine Cladocera remains and their environment: Implications for climate-change studies. In: Hydrobiologia. [Google Scholar]
  • Körner C. 2008. Alpine Ecosystems and the High-Elevation Treeline. In: Jørgensen SE (Ed.), Ecosystem Ecology, 1st edn. Radarweg: Elsevier B.V., pp. 150–156. [Google Scholar]
  • Kottek M, Grieser J, Beck C, et al. 2006. Updated world map of the Köppen-Geiger climate classification. Meteorol Zeitschrift 15: 259–263. [CrossRef] [Google Scholar]
  • Kratz TK, Frost TM, Magnuson JJ. 1987. Inferences from spatial and temporal variability in ecosystems: long-term zooplankton data from lakes. Am Nat 129: 830–846. [Google Scholar]
  • Kratzer CR, Brezonik PL. 1981. A Carlson-type trophic state index for nitrogen in florida lakes. JAWRA J Am Water Resour Assoc 17: 713–715. [CrossRef] [Google Scholar]
  • Kumar P, Wanganeo A, Sonaullah F, Wanganeo R. 2012. Limnological Study on two High Altitude Himalayan Ponds, Badrinath, Uttarakhand. Int J Ecosyst 2: 103–111. [CrossRef] [Google Scholar]
  • Langen TA, Twiss M, Young T, et al. 2006. Environmental Impacts of Winter Road Management at the Cascade Lakes and Chapel Road. [Google Scholar]
  • Legendre P, Legendre L. 1998. Numerical Ecology, 2nd edn. Amsterdam: Elsevier Science B.V. [Google Scholar]
  • Li X, Yu H, Ma C. 2014. Zooplankton community structure in relation to environmental factors and ecological assessment of water quality in the Harbin Section of the Songhua River. Chin. J Oceanol Limnol 32: 1344–1351. [CrossRef] [Google Scholar]
  • Lind OT. 1985. Handbook of common methods in Limnology, 2nd edn. Kendall Hunt Publishing. [Google Scholar]
  • Lorenzen CJ. 1967. Determination of Chlorophyll and Pheo-Pigments: Spectrophotometric Equations. Limnol Oceanogr 12: 343–346. [Google Scholar]
  • Lund JWG, Kipling C, Cren ED. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170. [Google Scholar]
  • Maberly SC, King L, Dent MM, et al. 2002. Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshw Biol 47: 2136–2152. [Google Scholar]
  • Marques JE, Marques JM, Chaminé HI, et al. 2013. Conceptualizing a mountain hydrogeologic system by using an integrated groundwater assessment (Serra da Estrela, Central Portugal): a review. Geosci J 17: 371–386. [CrossRef] [Google Scholar]
  • Martinez-Sanz C, Fernandez-Alaez C, Garcia-Criado F. 2012. Richness of littoral macroinvertebrate communities in mountain ponds from NW Spain: what factors does it depend on? J Limnol 71: 16. [Google Scholar]
  • McGowan S, Juhler RK, Anderson NJ. 2008. Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. J Paleolimnol 39: 301–317. [Google Scholar]
  • McKnight DM, Smith RL, Bradbury JP, et al. 1990. Phytoplankton dynamics in three Rocky Mountain lakes, Colorado, USA. Arct Alp Res 22: 264–274. [CrossRef] [Google Scholar]
  • McMaster NL, Schindler DW. 2005. Planktonic and Epipelic Algal Communities and their Relationship to Physical and Chemical Variables in Alpine Ponds in Banff National Park, Canada. Arctic, Antarct Alp Res 37: 337–347. [CrossRef] [Google Scholar]
  • Miranda PMA, Valente MA, Tomé AR, et al. 2006. O clima de Portugal nos séculos XX e XXI. In: Alterações climáticas em Portugal − cenários, impactos e medidas de remediação., Projecto S. Gradiva, Lisboa, p. 505. [Google Scholar]
  • Montgomery DC, Peck EA, Vining GG. 2012. Introduction to Linear Regression Analysis, 5th edn. New Jersey: Wiley. [Google Scholar]
  • Moreira RA, Rocha O, Santos RM dos, et al. 2016. Composition, body-size structure and biomass of zooplankton in a high-elevation temporary pond (Minas Gerais, Brazil). Oecologia Aust 20: 219–231. [CrossRef] [Google Scholar]
  • Muck P, Lampert W. 1980. Feeding of freshwater filter-feeders at very low food concentrations: Poor evidence for “threshold feeding” and “optimal foraging” in Daphnia longispina and Eudiaptomus gracilis. J Plankton Res 2: 367–379. [Google Scholar]
  • Newman RA. 1998. Ecological constraints on amphibian metamorphosis: Interactions of temperature and larval density with responses to changing food level. Oecologia 115: 9–16. [Google Scholar]
  • Oertli B, Indermuehle N, Angélibert S, et al. 2008. Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss National Park (Cirque of Macun) and relation to environmental variables. Hydrobiologia 597: 29–41. [Google Scholar]
  • Oksanen J, Guillaume FB, Friendly M, et al. 2019. vegan: Community Ecology Package. [Google Scholar]
  • Peel MC, Finlayson BL, Mcmahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4: 439–473. [CrossRef] [Google Scholar]
  • Persaud AD, Moeller RE, Williamson CE, Burns CW. 2007. Photoprotective compounds in weakly and strongly pigmented copepods and co-occurring cladocerans. Freshw Biol 52: 2121–2133. [Google Scholar]
  • R Core Team. 2018. R: A language and environment for statistical computing. [Google Scholar]
  • Raunkiaer C. 1934. The life forms of plants and statistical plant geography, 1st edn. Copenhagen: Oxford University Press. [Google Scholar]
  • Rautio M. 2001. Zooplankton assemblages related to environmental characteristics in treeline ponds in finnish lapland. Artic, Antarct Alp Res 33: 289–298. [CrossRef] [Google Scholar]
  • Rettig JE, Schuman LS, McCloskey JK. 2006. Seasonal Patterns of Abundance: Do Zooplankton in Small Ponds do the Same Thing Every Spring-Summer? Hydrobiologia 556: 193–207. [Google Scholar]
  • Reynolds C. 2006. The Ecology of Phytoplankton. New York: Cambridge University Press. [CrossRef] [Google Scholar]
  • Rodrigues PMSM, Rodrigues RMM, Costa BHF, et al. 2010. Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt. Chemom Intell Lab Syst 102:130–135. [CrossRef] [Google Scholar]
  • Scheffer M, Van Geest GJ, Zimmer K, et al. 2006. Small habitat size and isolation can promote species richness: Second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231. [Google Scholar]
  • Sommer U, Sommer ÆF. 2006. Cladocerans versus copepods: the cause of contrasting top − down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194. [Google Scholar]
  • Strickland JDH, Parsons TR. 1972. A Practical Handbook of Seawater Analysis. A Pract Handb seawater Anal 167: 185. [Google Scholar]
  • Tartarotti B, Baffico G, Temporetti P, Zagarese HE. 2004. Mycosporine-like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes. J Plankton Res 26: 753–762. [CrossRef] [PubMed] [Google Scholar]
  • Tavernini S. 2008. Seasonal and inter-annual zooplankton dynamics in temporary pools with different hydroperiods. Limnol − Ecol Manag Inl Waters 38: 63–75. [CrossRef] [Google Scholar]
  • ter Braak CJF. 1995. Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (Eds.), Data analysis in community and landscape ecology, 1st edn. Cambridgte, UK: Cambridge University Press. [Google Scholar]
  • ter Braak CJF, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5), 1st edn. Ithaca Ny, USA. [Google Scholar]
  • Tiberti R, Metta S, Austoni M, et al. 2013. Ecological dynamics of two remote alpine lakes during ice-free season. J Limnol 72. [Google Scholar]
  • Tolotti M, Manca M, Angeli N, et al. 2006. Phytoplankton and zooplankton associations in a set of Alpine high altitude lakes: Geographic distribution and ecology. Hydrobiologia 562: 99–122. [Google Scholar]
  • Toro M, Granados I, Robles S, Montes C. 2006. High mountain lakes of the Central Range (Iberian Peninsula): Regional limnology & environmental changes. Limnetica 25: 217–252. [Google Scholar]
  • Van de Bund W, Solimini A. 2007. Ecological Quality Ratios for ecological quality assessment in inland and marine waters. Eur Comm Luxemb. [Google Scholar]
  • Van den Berg MS, Coops H, Noordhuis R, et al. 1997. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia 342–343: 143–150. [Google Scholar]
  • Van Meter RJ, Swan CM, Leips J, Snodgrass JW. 2011. Road Salt Stress Induces Novel Food Web Structure and Interactions. Wetlands 31: 843–851. [CrossRef] [Google Scholar]
  • Vieira G. 2008. Combined numerical and geomorphological reconstruction of the Serra da Estrela plateau icefield, Portugal. Geomorphology 97: 190–207. [CrossRef] [Google Scholar]
  • Vincent WF. 2009. Cyanobacteria. Encycl. Inl. Waters. [Google Scholar]
  • Vinebrooke RD, Leavitt PR. 1999. Phytobenthos and Phytoplankton as Potential Indicators of Climate Change in Mountain Lakes and Ponds: a HPLC-Based Pigment Approach. J North Am Benthol Soc 18: 15–33. [CrossRef] [Google Scholar]
  • Watson RT, Haeberli W. 2004. Environmental Threats, Mitigation Strategies and High-Mountain Areas. Ambio 2–10. [Google Scholar]
  • Williams P, Whitfield M, Biggs J, et al. 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115: 329–341. [Google Scholar]
  • Williamson CE, Morris DP, Pace ML, Olson OG. 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44: 795–803. [Google Scholar]
  • Winder M, Bürgi HR, Spaak P. 2003. Mechanisms regulating zooplankton populations in a high-mountain lake. Freshw Biol 48: 795–809. [Google Scholar]
  • Winder M, Schindler DE. 2004. Climatic effects on the phenology of lake processes. Glob Chang Biol 10: 1844–1856. [Google Scholar]
  • Wissinger SA, Oertli B, Rosset V. 2016. Invertebrates Communities of Alpine Ponds. In: Batzer D, Boix D (Eds.), Invertebrates in Fresh Wetlands: An International Perspective on their Ecology, 1st edn. Springer International Publishing, pp. 55–103. [CrossRef] [Google Scholar]
  • Wolfinbarger WC. 1999. Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma, U.S.A. Hydrobiologia 400: 13–31. [Google Scholar]
  • Wolfram G, Argillier C, de Bortoli J, et al. 2009. Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633: 45–58. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.