Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 21
Number of page(s) 15
Published online 29 May 2018
  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU. 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25: 483–486. [CrossRef] [Google Scholar]
  • Alpert P, Baldi M, Ilani R, et al. 2006. In: Mediterranean Climate Variability, eds. Elsevier, New York-US pp. 149–177. [Google Scholar]
  • Angélibert S, Marty P, Céréghino R, Giani, N. 2004. Seasonal variations in the physical and chemical characteristics of ponds: implications for biodiversity conservation. Aq. Conserv. 14: 439–456. [CrossRef] [Google Scholar]
  • AQEM Consortium, 2002. Manual for the application of the AQEM method. A comprehensive method to assess European streams using macroinvertebrates, developed for the purpose of Water Framework Directive. Version 1.0, February 2002. [Google Scholar]
  • Athanasiou M, Bouloubassi I, Gogou A, et al. 2017. Sea surface temperatures and environmental conditions during the “warm Pliocene” interval (∼4.1–3.2 Ma) in the Eastern Mediterranean (Cyprus). Glob Planet Chang 150: 46–57. [CrossRef] [Google Scholar]
  • Bartzokas A, Lolis CJ, Metaxas CA. 2003. The 850 hPa relative vorticity centers of action for winter precipitation in the Greek area. Int J Climatol 23: 813–828. [CrossRef] [Google Scholar]
  • Belk D. 1998. Global status and trends in ephemeral pool invertebrate conservation: implications for Californian fairy shrimp. In: Witham CW, Belk D, Ferren WR, Ornduff R. eds. Ecology. Conservation and Management of Vernal Pool Ecosystems, California Native Plant Society, Sacramento, pp. 147–150. [Google Scholar]
  • Berger JF, Guilaine J. 2009. The 8200 cal BP abrupt environmental change and the Neolithic transition: a Mediterranean perspective. Quatern Int 200: 31–49. [CrossRef] [Google Scholar]
  • Bottema S, Sarpaki A. 2003. Environmental change in Crete: a 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. The Holocene 13: 733–749. [Google Scholar]
  • Cullen HM, De Menocal PB, Hemming S, et al. 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28: 379–382. [CrossRef] [Google Scholar]
  • Dimitriou E, Karaouzas I, Skoulikidis N, Zacharias I. 2006. Assessing the environmental status of Mediterranean temporary ponds in Greece. Int J Lim 42: 33–41. [CrossRef] [Google Scholar]
  • Dimitriou E, Moussoulis E, Stamati F, Nikolaidis N. 2009. Modelling hydrological characteristics of Mediterranean Temporary Ponds and potential impacts from climate change. Hydrobiologia 634: 195–208, DOI:10.1007/s10750-009-9898-2. [CrossRef] [Google Scholar]
  • Dudley DW, 1997. Temporary ponds and their invertebrate communities. Aquat ConservMar Freshw Ecosyst 7: 105–117. [Google Scholar]
  • Durrieu de Madron X, Guieu C, Sempéré R, Conan P, Cossa D, et al. 2011. Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Prog Ocean 91: 97–166. [CrossRef] [Google Scholar]
  • Ehrmann W, Schmiedl G, Hamman Y, Kuhnt T, Hemleben C, Siebel W. 2007. Clay minerals in Late Glacial and Holocene sediments in northern and southern Aegean Sea. Palaeogeogr. Palaeocl. 249: 36–57. [CrossRef] [Google Scholar]
  • Engström DR, Wright, HE. 1984. Chemical stratigraphy of lake sediments as a record of environmental change In: Haworth EY, Lund JWG. eds. Lake sediments and environmental history, Leicester University Press, UK pp 11–67. [Google Scholar]
  • European Commission DG Environment, 2003. Interpretation manual of European Union habitats − directive. Natura 2000. Nat. Biodiv. 25: 32–33. [Google Scholar]
  • Friday EL. 1987. The diversity of macro invertebrate and macrophyte communities in ponds. Freshw Biol 18: 87–104. [CrossRef] [Google Scholar]
  • Fritz SC. 2008. Deciphering climate history from lake sediments. J Paleolimnol 39: 5–16, DOI:10.1007/s10933-007-9134-x. [CrossRef] [Google Scholar]
  • Fytrolakis N. 1980. The Geology of Crete Island. PhD Thesis, National Technical University of Athens. [Google Scholar]
  • Ghosn D, Vogiatzakis I, Kazakis G, et al. 2010. Ecological changes in the highest temporary pond of western Crete (Greece): past, present and future. Hydrobiol 648: 3–18. [CrossRef] [Google Scholar]
  • Gogou A, Bouloubassi I, Lykousis V, Arnaboldi M, Gaitani P, Meyers PA. 2007. Organic geochemical evidence of Late Glacial-Holocene climate instability in the North Aegean Sea. Palaeogeogr Palaeocl 256: 1–20. [CrossRef] [Google Scholar]
  • Gogou A, Triantaphyllou MV, Xoplaki E, et al. 2016. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years. Quat Sci Rev 136: 209–228. [CrossRef] [Google Scholar]
  • Graham TB. 2002. Survey of aquatic macro invertebrates and amphibians at Wapatki National Monument, Arizona, USA: an evaluation of selected factors affecting species richness in ephemeral pools. Hydrobiologia 486: 215–224. [CrossRef] [Google Scholar]
  • Grillas P, Gauthier P, Yavercovski N. Perennou C. 2004. Mediterranean Temporary Pools; Vol. 1 issues Relating to Conservation, Functioning and Management. Station biologique de la Tour du Valat, France. [Google Scholar]
  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations − the CRU TS3.10 Dataset. Int J Climatol 34: 623–642, DOI:10.1002/joc.3711. [Google Scholar]
  • Hercman H, Pawlack J. 2012. MOD-AGE: An age-depth model construction algorithm. Quat Geochronol 12: 1–10. [CrossRef] [Google Scholar]
  • Hughes L. 2000. Biological consequences of global warming: is the signal already apparent? Tr Ecol Evol 15: 56–61. [CrossRef] [PubMed] [Google Scholar]
  • Izdebski A, Holmgren K, Weiberg E, et al. 2016. Realizing consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quat Sci Rev 136: 5–22. [CrossRef] [Google Scholar]
  • Jakob C, Poizat G, Veith M, Seitz A, Crivelli AJ, 2003. Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology. Hydrobiologia 499: 51–61. [CrossRef] [Google Scholar]
  • Jiménez-Espejo FJ, García-Alix A, Jiménez-Moreno G. 2014. Saharan aeolian input and effective humidity variations over Western Europe during the Holocene from a high altitude record. Chem Geol 374–375: 1–12. [CrossRef] [Google Scholar]
  • Kaushal S, Binford MW. 1999. Relationship between C/N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J Paleolimnol 22: 439–442. [CrossRef] [Google Scholar]
  • Kouli K, Gogou A, Bouloubassi I, et al. 2012. Late postglacial paleoenvironmental change in the northeastern Mediterranean region: Combined palynological and molecular biomarker evidence. Quatern Int 261: 118–127. [CrossRef] [Google Scholar]
  • Kuhlemann J, Rohling EJ, Krumrei I, Kubik P, Ivy-Ochs S, Kucera M. 2008. Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science 321: 1338–1340. [CrossRef] [Google Scholar]
  • Lake PS, Palmer MA, Biro P, et al. 2000. Global change and the biodiversity of freshwater ecosystems: impacts on linkages between above-sediment and sediment biota. Bioscience 50: 1099–1107. [CrossRef] [Google Scholar]
  • Lionello P. 2012. The climate of Mediterranean Region. From the Past to the future. Elsevier, Amsterdam. [Google Scholar]
  • Marino G, Rohling EJ, Sangiorgi F. 2009. Early and middle Holocene in the Aegean Sea: interplay between high and low latitude climate variability. Quat Sci Rev 28: 3246–3262. [CrossRef] [Google Scholar]
  • Massi U, Azzaro E, Kyriakopoulos K, Magganas A. 2002. Geochemical features of the “Plattenkalk” series from the Hordaki area (western Crete, Greece). Periodico di Mineral 69: 311–323. [Google Scholar]
  • Mayewski PA, Rohling E, Stager CJ, et al. 2004. Holocene climate variability. Quat Res 62: 243–255. [CrossRef] [Google Scholar]
  • Meyers PA, Leenheer MJ, Eadie BJ, Maule SJ. 1994. Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochem Cosmochim Acta 48, 443–452. [CrossRef] [Google Scholar]
  • Nicolet P, Biggs J, Fox G. 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol Conserv 120: 261–278. [CrossRef] [Google Scholar]
  • Nihlén T, Mattson J, Rapp A, Gagaoudaki C, Kornaros G, Papageorgiou J. 1995. Monitoring of Sahara dust fallout in Crete and its contribution to soil formation. Tellus 47B: 365–374. [CrossRef] [Google Scholar]
  • Peyron O, Combourieu-Nebout N, Brayshaw D. 2017. Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model-data comparison. Clim Past 13: 249–265. [CrossRef] [Google Scholar]
  • Poff NL, Brinson MA, Day JW. 2002. Aquatic ecosystems and global climate change: potential impacts on inland freshwater and coastal wetland ecosystems in the United States. PEW Center on Global Climate Change, Arlington, VA. Available from: [Google Scholar]
  • Ramsar Convention Secretariat, 2002. Resolution VIII.33. Guidance for identifying, sustainably managing, and designating temporary pools as Wetlands of International Importance. [Google Scholar]
  • Rasmussen SO, Andersen KK, Svensson AM. 2006. A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111: D06102, DOI:10.1029/2005JD006079. [Google Scholar]
  • Reimer PJ, Baillie MGL, Bard E, et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–1058. [CrossRef] [Google Scholar]
  • Rhazi L, Grillas P, Tan Ham L, Khyari DEL. 2001. The seed bank and the between years dynamics of the vegetation of a Mediterranean temporary pool (NW Morocco). Ecologia Mediterr 27: 69–88. [Google Scholar]
  • Rhazi M, Grillas P, Charpentier A, Médail F. 2004. Experimental management of Mediterranean temporary pools for conservation of the rare quillwort Isoetes setacea. Biol Conserv 118: 675–684. [CrossRef] [Google Scholar]
  • Richter D, Krahl J, Kaufmann G, Kozur H, Förster O, Heinritzi F. 1983. Neuedatenzur Bi-ostratigraphie und zurtektonischenLagerung der Phyllit-Gruppe und der Trypali-Gruppe auf der Insel Kreta (Griechenland). Geol Rundsch 72: 1147–1166. [CrossRef] [Google Scholar]
  • Rohling EJ, Mayewski PA, Abu-Zied RH, Casford JSL, Hayes A. 2002. Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Clim Dynam 18, 587–593. [CrossRef] [Google Scholar]
  • Schmidt R, Koinig KA, Thompson R, Kamenik C, 2002. A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unter Landschitzsee, Niedere Tauern). Palaeogeogr Palaeocl 187: 101–120. [CrossRef] [Google Scholar]
  • Spencer ML, Blaustein S, Schwartz S, Cohen JE. 1999. Species richness and the proportion of predatory animal species in temporary pools, relationship with habitat size and permanence. Ecol Lett 2: 157–166. [CrossRef] [Google Scholar]
  • Stamati F, Nikolaidis N, Dimitriou E, Koussouris T. 2008. Hydro-geochemical aspects of Mediterranean Temporary Ponds in Western Crete. J Environ Qual 37: 164–173. [CrossRef] [PubMed] [Google Scholar]
  • Stamatakis M, Anastasatou M, Tsoutsia A, Petrakis S, Kapsimalis V, et al. 2015. Quality factors concerning possible exploitation of Marine Aggregates in NW Crete Island inner shelf. In: Proceedings of 11th Oceanographic Symposium, Mytilene, Greece, pp. 1081–1084. [Google Scholar]
  • Stuiver M, Reimer PJ, Reimer RW. 2005. CALIB 6.1.1. [Google Scholar]
  • Styllas MN, Ghilardi M. 2017. Early- to mid-Holocene paleohydrology in northeast Mediterranean: the detrital record of Aliakmon River in Loudias Lake, Greece. The Holocene 27: 1487–1498. [CrossRef] [Google Scholar]
  • Styllas MN, Schimmelpfennig I, Ghilardi M, Benedetti L. 2016. Geomorphologic and paleoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene 26: 709–721. [CrossRef] [Google Scholar]
  • Tachet H, Richoux P, Bournard M, Usseglio-Polatera P. 2010. Invertébrés d'Eau Douce, Systématique, Biologie, Ecologie. Paris, eds. CNRS. [Google Scholar]
  • Ten Veen JH, Meijer PT. 1999. Late Miocene to recent tectonic evolution of Crete (Greece): geological observations and model analysis. Tectonophysics 298: 191–208. [CrossRef] [Google Scholar]
  • Theodorakopoulou K, Pavlopoulos K, Athanassas CD, Zacharias N. 2012. Sedimentological response to Holocene climate events in Istron area, Gulf of Mirabello, NE Crete. Quat Int 266: 62–73, DOI:10.1016/j.quaint.2011.05.032. [CrossRef] [Google Scholar]
  • Triantaphyllou MV, Ziveri P, Gogou A, et al. 2009. Late Glacial − Holocene climate variability at the south-eastern margin of the Aegean Sea. Mar Geol 266: 182–197. [CrossRef] [Google Scholar]
  • Triantaphyllou MV, Gogou A, Bouloubassi I. 2014. Evidence for a warm and humid Mid-Holocene episode in the Aegean and northern Levantine Seas (Greece, NE Mediterranean). Reg Environ Change 14: 1967–1712, DOI:10.1007/s10113-013-0495-6. [CrossRef] [Google Scholar]
  • Von Eynatten H, Tolosana-Delgado R, Karius V. 2012. Sediment generation in modern glacial setting: Grain-size and source-rock control on sediment composition, Sediment Geol 280: 80–92. [CrossRef] [Google Scholar]
  • Vitousek PM, 1994. Beyond global warming: ecology and global change. Ecology 75: 1861–1876. [CrossRef] [Google Scholar]
  • Wallace ID, Wallace B, Philipson GN. 1990. A key to the case-bearing larvae of Britain and Ireland. Freshwater Biological Association. Scientific Publication No 51, Series Ed. Elliot, J. M. [Google Scholar]
  • Warwick NWM, Brock MA. 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquat Bot 77: 153–167. [CrossRef] [Google Scholar]
  • Weber ER, Braunitzer G, Kleinschmidt T. 1985. Functional multiplicity and structural correlations in the hemoglobin system of larvae of Chironomus thummi thummi (insecta, diptera): Hb components CTT I, CTT IIβ, CTT III, CTT IV, CTT VI, CTT VIIB, CTT IX and CTT X. Comp. Biochem Physiol Part B: Comp Biochem 80: 747–753. [CrossRef] [Google Scholar]
  • Weiss H. 2000. Beyond the Younger Dryas: collapse as adaptation to abrupt climate change in ancient West Asia and the Eastern Mediterranean. In: Bawdon G, Reycraft RM, eds. Environmental Disaster and the Archaeology of Human Response, Maxwell Museum of Anthropology, Albuquerque, pp. 63–74. [Google Scholar]
  • Wellborn G, Skelly D, Werner E. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Ann Rev Ecol Sys 27: 337–363. [CrossRef] [Google Scholar]
  • Williams DD. 1997. Temporary ponds and their invertebrate communities. Aq Conserv 7: 105–117. [Google Scholar]
  • Xoplaki E, Luterbacher J, Burkard B, Patrikas I, Maheras P. 2000. Connection between the large scale 500 hPa geopotential height fields and rainfall over Greece during wintertime. Clim Res 14: 129–146. [CrossRef] [Google Scholar]
  • Zacharias I, Dimitriou E, Dekker A, Dorsman E. 2007. Overview of temporary ponds in the Mediterranean region: threats, management and conservation issues. J Εnviron Bio 28: 1–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.