Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 20
Number of page(s) 8
DOI https://doi.org/10.1051/limn/2018011
Published online 27 April 2018
  • Arredondo BO, Voltolina D. 2007. Determinación de pigmentos por espectrofotometría. In: Arredondo BO, Voltolina D, ed. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. México: Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, B.C. Sur, pp. 59–67. [Google Scholar]
  • Arredondo BO, Cordero B, Voltolina D. 2007. Determinación de proteínas por métodos espectrofotométricos. In: Arredondo BO, Voltolina D, ed. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. México: Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, B.C. Sur, pp. 31–39. [Google Scholar]
  • Begon M, Harper JL, Townsend CP. 1996. Ecology: Individuals, populations, and communities, 3rd ed. Oxford: Blackwell Scientific Publications, 1068 p. [Google Scholar]
  • Blas-Valdivia V, Ortiz-Butron R, Rodriguez-Sanchez R, Torres-Manzo P, Hernández-García A, Cano-Europa E. 2012. Microalgae of the Chlorophyceae Class: Potential Nutraceuticals Reducing Oxidative Stress Intensity and Cellular Damage. In: Lushchak VI, Gospodaryov D.V., eds. Oxidative Stress and Diseases, InTech, Rijeka, Croatia-EU, pp. 581–610. [Google Scholar]
  • Brown MR. 2002. Nutritional value of microalgae for aquaculture. Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola, Cancún, Q. Roo. México, pp. 281–292. [Google Scholar]
  • Castro BT, De Lara AR, Castro MG, Castro MJ, Malpica SA. 2003. Alimento vivo en la acuacultura. Contactos 48: 27–33. [Google Scholar]
  • Chacón LTL, González GEM. 2010. Microalgae for “healthy” foods-possibilities and challenges. Compr Rev Food Sci Food Saf 9: 655–675. [CrossRef] [Google Scholar]
  • Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT. 2010. Live feeds for early stages of fish rearing. Aquac Res 41: 613–640. [CrossRef] [EDP Sciences] [Google Scholar]
  • Corcoran AA, Boeing WJ. 2012. Biodiversity increases the productivity and stability of phytoplankton communities. PLOS ONE 7: e 49397. [CrossRef] [Google Scholar]
  • Del Ángel J, Carreón L, Arjona MO. 2007. Extracción y cuantificación de lípidos. In: Arredondo BO, Voltolina D, ed. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. México: Centro de investigaciones biológicas del noroeste, S.C. La Paz, B.C. Sur, pp. 47–57. [Google Scholar]
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356. [CrossRef] [Google Scholar]
  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A. 2009. Enriching rotifers with ‘Premium’ microalgae Nannochloropsis gaditana. Mar Biotechnol 11: 585–595. [CrossRef] [Google Scholar]
  • Gatenby CM, Orcutt DM, Kreeger DA, Parker BC, Jones VA, Neves RJ. 2003. Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15: 1–11. [CrossRef] [Google Scholar]
  • Guedes AC, Malcata FX. 2012. Nutritional value and uses of microalgae in aquaculture. In: Muchlisin Z, ed. Aquaculture. InTech, Rijeka, Croatia-EU, pp. 59–78. [Google Scholar]
  • Hagiwara A, Michael D, Gallardo WG, Assavaaree M, Kotani T, Araujo AB. 2001. Live food production in Japan: recent progress and future aspects. Aquaculture 200: 111–127. [CrossRef] [Google Scholar]
  • Halim R, Michael D, Paul K, Webley A. 2012. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30: 709–732. [Google Scholar]
  • Hemaiswarya S, Raja R, Ravi KR, Ganesan V, Anabazhagan C. 2010. Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27: 1737–1746. [CrossRef] [Google Scholar]
  • Hoff FH, Snell TW. 2008. Rotifer culture. In Hoff FH, Snell TW, eds. Plankton culture manual. Florida(USA): Florida Aqua Farms, Inc., pp. 65–100. [Google Scholar]
  • Hotos GN. 2002. Selectivity of the rotifer Brachionus plicatilis fed mixtures of algal species with various cell volumes and cell densities. Aquac Res 33: 949–957. [CrossRef] [Google Scholar]
  • Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanze 167: 191–194. [CrossRef] [Google Scholar]
  • Kobayashi T, Nagase T, Hino A, Takeuchi T. 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fish Sci 74: 649–656. [CrossRef] [Google Scholar]
  • Korstad J, Olsen Y, Vadstein O. 1989. Life history characteristics of Brachionus plicatilis (rotifera) fed different algae. Hydrobiologia 186/187: 43–50. [CrossRef] [Google Scholar]
  • Kostopoulou V, Miliou H, Verriopoulos G. 2009. Morphometric changes in a strain of the lineage ‘Nevada’, belonging to the Brachionus plicatilis (Rotifera) complex. Aquac Res 40: 938–949. [CrossRef] [Google Scholar]
  • Kostopoulou V, Carmona MJ, Divanach P. 2012. The rotifer Brachionus plicatilis: an emerging bio-tool for numerous applications. J Biol Res-Thessalon 17: 97–112. [Google Scholar]
  • Kruger NJ. 2002. The Bradford method for protein quantification. In: Walker JM, ed., The protein protocols. Humana Press, Inc., Totowa, NJ, pp. 15–21. [CrossRef] [Google Scholar]
  • Liu CP, Lin LP. 2001. Ultrastructural study and lipid formation of Isochrysis sp. Bot Bull Acad Sin 42: 207–214. [Google Scholar]
  • Moha-León JD, Pérez-Legaspi IA, Hernández-Vergara MP, Pérez-Rostro CI, Clark-Tapia R. 2015. Study of the effects of photoperiod and salinity in the Alvarado strain of the Brachionus plicatilis species complex (Rotifera: Monogononta). Ann Limnol-Int J Limnol 51: 335–342. [CrossRef] [Google Scholar]
  • Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF. 2013. Standard methods for measuring growth of algae and their composition. In: Borowitzka M, Moheimani N, eds. Algae for biofuels and energy. Developments in applied phycology, vol 5. New York(London): Dordrecht Heidelberg, Springer, pp. 265–284. [CrossRef] [Google Scholar]
  • Muller-Feuga A. 2000. The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12: 527–534. [CrossRef] [Google Scholar]
  • Pacheco JV, Cadena MR, Sánchez MP, Tovar DR, Rangel CD. 2010. Effect of culture medium and nutrient concentration on fatty acid content of Chaetoceros muelleri. Rev Latinoam Biotecnol Amb Algal 1: 6–15. [Google Scholar]
  • Pagano M, Saint-Jean L, Arfi R, Bouvy M, Guiral D. 1999. Zooplankton food limitation and grazing impact in a eutrophic brackish-water tropical pond (Cote d'Ivoire, West Africa). Hydrobiologia 390: 83–98. [CrossRef] [Google Scholar]
  • Pérez-Legaspi IA, Rico-Martínez R. 1998. Effect of temperature and food concentration in two species of littoral rotifers. Hydrobiologia 387/388: 341–348. [CrossRef] [Google Scholar]
  • Prieto M, Castaño F, Sierra J, Logato P, Botero J. 2006. Alimento vivo en la larvicultura de peces marinos: copépodos y mesocosmos. Rev MVZ Córdoba 11: 30–36. [Google Scholar]
  • Rico-Martínez R, Snell TW, Shearer TL. 2013. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera). Environ Pollut 173: 5–10. [CrossRef] [PubMed] [Google Scholar]
  • Rico-Martínez R, Arzate-Cárdenas MA, Robles-Vargas D, Pérez-Legaspi IA, Alvarado-Flores J, Santos-Medrano GE. 2016. Rotifers as models in toxicity screening of chemicals and environmental samples. In: Larramendy M, Soloneski S, ed. Invertebrates − experimental models in toxicity screening. InTech, Rijeka, Croatia-EU, pp. 57–99. [Google Scholar]
  • Sánchez TH, Juscamaita MJ, Vargas CJ, Oliveros RR. 2008. Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en Medios enriquecidos con ensilado biológico de pescado. Ecol Apl 7: 149–158. [CrossRef] [Google Scholar]
  • Sayegh FAQ, Radi N, Montagnes DJS. 2007. Do strain differences in microalgae alter their relative quality as a food for the rotifer Brachionus plicatilis? Aquaculture 273: 665–678. [CrossRef] [Google Scholar]
  • Stein J. 1979. Handbook of phycological methods, culture methods and growth measurement. New York, USA: Cambridge University Press, 448 p. [Google Scholar]
  • Strickland JD, Parsons TR. 1972. A practical handbook of seawaters analysis, Canada: Fisheries Research Board of Canada, 310 p. [Google Scholar]
  • Vásquez SA, Guevara M, Salazar G, Arredondo BV, Cipriani R, Lemus N, Lodeiras C. 2007. Crecimiento y composición bioquímica de cuatro cepas de Dunaliella para ser utilizadas en acuicultura. Bol Centro Invest Biol 41: 181–194. [Google Scholar]
  • Yin XW, Zhao W. 2008. Studies on life history characteristics of Brachionus plicatilis O. F. Müller (Rotifera) in relation to temperature, salinity and food algae. Aquat Ecol 42: 165–176. [CrossRef] [Google Scholar]
  • Yúfera M. 2001. Studies on Brachionus (Rotifera): an example of interactions between fundamental and applied research. Hydrobiologia 446/447: 383–392. [CrossRef] [Google Scholar]
  • Zou N, Zhang C, Cohen Z, Richmond A. 2010. Production of cell mass and eicosapentaemoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35: 127–133. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.