Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 22
Number of page(s) 12
Published online 20 June 2018
  • Alliksaar T. 2000. Spatial and temporal variability of the distribution of spherical fly-ash particles in sediments in Estonia. Tallinn Pedagogical University, Dissertations on Natural Sciences, 4: 1–44. [Google Scholar]
  • Alliksaar T, Heinsalu A. 2012. A radical shift from soft-water to hard-water lake: palaeolimnological evidence from Lake Kooraste Kõverjärv, southern Estonia. Est J Earth Sci 61: 317–327. [CrossRef] [Google Scholar]
  • Asaris G. 2012. Riga: Entering the 21st Century. In: Ziemelniece A, ed. Proceedings of the Latvian University of Agriculture. Landscape Architecture and Art, Vol. 1, pp. 5–9. [Google Scholar]
  • Battarbee RW, Bennion H. 2011. Palaeolimnology and its developing role in assessing the history and extent of human impact on lake ecosystems. J Paleolimnol 45: 399–404. [CrossRef] [Google Scholar]
  • Battarbee R, Jones VJ, Flower RJ, et al. 2001. Diatoms. In: Smol JP, Birks HJB, Last W, eds. Tracking environmental change using lake sediments, vol. 3., Terrestrial, algal, and siliceous indicators. Dordrecht: Kluwer Academic Publishers, pp. 155–202. [Google Scholar]
  • Bellinger EG, Sigee DC. 2010. Freshwater algae. Identification and use as bioindicators. Chichester: John Wiley and Sons, 285 p, ISBN 978-0-470-05814-5. [Google Scholar]
  • Berglund BE, Ralska-Jasiewiczowa M. 1986. Pollen analysis and pollen diagrams. In: Berglund B, ed. Handbook of holocene palaeoecology and palaeohydrology. New York: Wiley, pp. 455–484. [Google Scholar]
  • Birks HJB. 2007. Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. Veg Hist Archaeobot 16: 197–202. [CrossRef] [Google Scholar]
  • Birks HJB, Birks HH. 2008. Biological responses to rapid climate change at the Younger Dryas-Holocene transition at Kråkenes, western Norway. Holocene 18: 19–30. [CrossRef] [Google Scholar]
  • Blaauw M, Christen JA. 2011. Flexible paleoclimate age-depth models using an auto-regressive gamma process. Bayesian Anal 6: 457–474. [Google Scholar]
  • Bradshaw EG, Rasmussen P, Vad Odgaard B. 2005. Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. Holocene 8: 1152–1162. [CrossRef] [Google Scholar]
  • Brown A, Pluskowski A. 2014. Medieval landscape transformation in the southeast and eastern Baltic: palaeoenvironmental perspectives on the colonisation of frontier landscapes. Archaeol Balt 20: 24–46. [Google Scholar]
  • Büntgen U, Myglan VS, Ljungqvist FC, et al. 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat Geosci 9: 231–236. [Google Scholar]
  • Caune A, Ose I. 2004. Latvijas 12. gadsimta beigu– −17 gadsimat vācu piļu leksikons. Rīga: Latvijas Vēstures Institūts. (in Latvian) [Google Scholar]
  • De Senerpont Domis LN, Elser JJ, Gsell AS, et al. 2013. Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58: 463–482. [CrossRef] [Google Scholar]
  • Douglas I, James P. 2015. Urban ecology, an introduction. New York: Routledge, 472 p. [Google Scholar]
  • Douglas MSV, Smol JP. 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In: Stoermer EF, Smol JP, eds. The diatoms: applications for the environmental and Earth sciences. Cambridge: Cambridge University Press, pp. 227–244. [Google Scholar]
  • EC [European Community]. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun 327: 1–71. [Google Scholar]
  • Enters D, Dörfler W, Zolitschka B. 2008. Historical soil erosion and land-use change during the last two millennia recorded in lake sediments of Frickenhauser See, northern Bavaria, central Germany. Holocene 18: 243–254. [CrossRef] [Google Scholar]
  • Gill JL, McLauchlan KK, Skibbe AM, Goring S, Zirbel CR, Williams JW. 2013. Linking abundance of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. J Ecol 101: 1125–1136. [CrossRef] [Google Scholar]
  • Graudonis J. 2001. Early Metal Period. In: Graudonis J, ed. The prehistory of Latvia. Riga: Institute of the history of Latvia. pp. 40. [Google Scholar]
  • Grudzinska I, Vassiljev J, Saarse L, Reitalu T, Veski S. 2017. Past environmental change and seawater intrusion into coastal Lake Lilaste, Latvia. J Paleolimnol 57: 257–271. [CrossRef] [Google Scholar]
  • Heinsalu A, Alliksaar T. 2009a. Palaeolimnological assessment of environmental change over the last two centuries in oligotrophic Lake Nohipalu Valgjärv, southern Estonia. Est J Earth Sci 58: 124–132. [CrossRef] [Google Scholar]
  • Heinsalu A, Alliksaar T. 2009b. Palaeolimnological assessment of the reference conditions and ecological status of lakes in Estonia − implications for the European Union Water Framework Directive. Est J Earth Sci 58: 334–341. [CrossRef] [Google Scholar]
  • Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25: 101–110. [CrossRef] [Google Scholar]
  • Hering D, Borja A, Carstensen J, et al. 2010. The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408: 4007–4019. [Google Scholar]
  • Hill MO, Gauch HG. 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 41: 47–58. [CrossRef] [Google Scholar]
  • IPCC. 2014. Climate Change 2014: Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA, eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva (Switzerland): IPCC, pp.151. [Google Scholar]
  • Jankovská V, Komárek J. 2000. Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35: 59–82. [CrossRef] [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1986. Bacillariophyaceae 1.Teil Naviculaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D, eds. Süsswasserflora von Mitteleuropa 2/1. Stuttgart: Gustav Fisher Verlag. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1988. Bacillariophyaceae 2.Teil Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D, eds. Süsswasserflora von Mitteleuropa 2/2. Stuttgart: Gustav Fisher Verlag. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1991a. Bacillariophyaceae 3.Teil Centrales, Fragilariceae, Eunotiaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D, eds. Süsswasserflora von Mitteleuropa 2/3. Stuttgart: Gustav Fisher Verlag. [Google Scholar]
  • Krammer K, Lange-Bertalot H. 1991b. Bacillariophyaceae 4.Teil Achnanthaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D, eds. Süsswasserflora von Mitteleuropa 2/4. Stuttgart: Gustav Fisher Verlag. [Google Scholar]
  • Liu X, Sheng H, Jiang S, Yuan Z, Zhang C, Elser JJ. 2016. Intensification of phosphorus cycling in China since the 1600s. PNAS 113: 2609–2614. [CrossRef] [Google Scholar]
  • Loze I. 1972. Stoianka Lagazha (Lubaskaia nizmennostj). Latvijas PSR Zintātņu Akadēmijas Vēstis 6, 57–73. (in Russian) [Google Scholar]
  • Makohonienko M. 2000. Przyrodnicza historia Gniezna. Prace zakładu biogeografii i paleoekologii UAM. Homini, Bydgoszcz-Poznań. (in Polish) [Google Scholar]
  • Marzecová A, Avi E, Mikomägi A, Koff T. 2017. Ecological response of a shallow boreal lake to biomanipulation and catchment land-use: integrating paleolimnological evidence with information from limnological surveys and maps. J Paleolimnol 57: 1–18. [CrossRef] [Google Scholar]
  • Mikomägi A, Koff T, Martma T, Marzecová A. 2016. Biological and geochemical records of human-induced eutrophication in a small hard-water lake. Boreal Environ Res 21: 513–527. [Google Scholar]
  • O’Reilly CM, Sharma S, Gray DK, et al. 2015. Rapid and highly variable warming of lake surface water around the globe. Geophys Res Lett 42: 1–9. [CrossRef] [Google Scholar]
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science 320: 57–58. [CrossRef] [PubMed] [Google Scholar]
  • Park Y-S. 2016. Aquatic ecosystem assessment and management. Ann Limnol − Int J Limnol 52: 61–63. [CrossRef] [Google Scholar]
  • Petit CC, Lambin EF. 2002. Long-term land-cover changes in the Belgian Ardennes (1775-1929): model-based reconstruction vs. historical maps. Glob Chang Biol 8: 616–630. [CrossRef] [Google Scholar]
  • R Core Team. 2014. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, [Google Scholar]
  • Reimer PJ, Bard E, Bayliss A, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0-50 000 years cal BP. Radiocarbon 55: 1869–1887. [CrossRef] [Google Scholar]
  • Rose N. 1990. A method for the selective removal of inorganic ash particles from lake sediments. J Paleolimnol 4: 61–68. [CrossRef] [Google Scholar]
  • Schiefer E, Petticrew EL, Immell R, Hassan MA, Sonderegger DL. 2013. Land use and climate change impacts on lake sedimentation rates in western Canada. Anthropocene 3: 61–71. [CrossRef] [Google Scholar]
  • Sillasoo Ü, Hiie S. 2007. An archaeobotanical approach to investigating food of the Hanseatic period in Estonia. In: Karg S, ed. Medieval Food Traditions in Northern Europe. Copenhagen, National Museum of Denmark, pp. 73–96. [Google Scholar]
  • Smith SJ, Edmonds J, Hartin CA, Mundra A, Calvin K. 2015. Near-term acceleration in the rate of temperature change. Nat Clim Chang 5: 333–336. [CrossRef] [Google Scholar]
  • Smol JP. 2008. Pollution of lakes and rivers, a paleoenvironmental perspective, second edition. Blackwell Publishing, 400 p. [Google Scholar]
  • Smol JP, Wolfe AP, Birks HJB, et al. 2005. Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102: 4397–4402. [Google Scholar]
  • Soininen J, Bartels P, Heino J, Luoto M, Hillebrand H. 2015. Toward more integrated ecosystem research in aquatic and terrestrial environments. Bioscience 65: 174–182. [CrossRef] [Google Scholar]
  • Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev 2: 81–98. [CrossRef] [Google Scholar]
  • Stivrins N, Kalnina L, Veski S, Zeimule S. 2014. Local and regional Holocene vegetation dynamics at two sites in eastern Latvia. Boreal Environ Res 19: 310–322. [Google Scholar]
  • Stivrins N, Brown A, Reitalu T, et al. 2015a. Landscape change in central Latvia since the Iron Age: multi-proxy analysis of the vegetation impact of conflict, colonisation and economic expansion during the last 2000 years. Veg Hist Archaeobot 24: 377–391. [CrossRef] [Google Scholar]
  • Stivrins N, Kołaczek P, Reitalu T, Seppä H, Veski S. 2015b. Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14 500 years in eastern Latvia. J Paleolimnol 54: 103–119. [CrossRef] [Google Scholar]
  • Stivrins N, Brown A, Veski S, et al. 2016a. Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th-16th century) northern Latvia, eastern Baltic. Holocene 26: 61–69. [CrossRef] [Google Scholar]
  • Stivrins N, Wulf S, Wastegård S, et al. 2016b. Detection of the Askja AD 1875 cryptotephra in Latvia, Eastern Europe. J Quat Sci 31: 437–441. [CrossRef] [Google Scholar]
  • Stivrins N, Liiv M, Heinsalu A, Gałka M, Veski S. 2017. The final melt-out of dead-ice at Holocene Thermal Maximum (8500–7400 cal yr BP) in western Latvia. Holocene 27: 1146–1157. [CrossRef] [Google Scholar]
  • Stivrins N, Soininen J, Tõnno I, Freiberg R, Veski S, Kisand V. 2018. Towards understanding the abundance of non-pollen palynomorphs: a comparison of fossil algae, algal pigments and sedaDNA from temperate lake sediments. Rev Palaeobot Palynol 249: 9–15. [CrossRef] [Google Scholar]
  • Strods H, Zunde M. 1999. Latvijas meža vēsture līdz 1940. gadam. Rīga: Pasaules dabas fonds, 363 p. (in Latvian) [Google Scholar]
  • ter Braak CJF, Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination (version 5.0). New York, Ithaca (USA): Microcomputer Power, 496 p. [Google Scholar]
  • van Geel B, Aptroot A. 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwig 82: 313–329. [CrossRef] [Google Scholar]
  • van Geel B, Mur LR, Ralska-Jasiewiczowa M, Goslar T. 1994. Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev Palaeobot Palynol 83: 97–105. [CrossRef] [Google Scholar]
  • Vasks A, Kalnina L, Ritums R. 1999. The introduction and pre-Christian history of farming in Latvia. In: Miller U, Hackens T, Lang V, Raukas A, Hicks S, eds. Environmental and Cultural History of the Eastern Baltic Region. PACT, Vol. 57, pp. 291–304. [Google Scholar]
  • Veski S, Koppel K, Poska A. 2005. Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rōuge, southern Estonia. J Biogeogr 32: 1473–1488. [CrossRef] [Google Scholar]
  • Wacnik A. 2009. Vegetation development in the Lake Miłkowskie area, north-eastern Poland, from the Plenivistulian to the late Holocene. Acta Palaeobot 49: 287–335. [Google Scholar]
  • Wang C, Liu Y, Li X, Lai Z, Tackx M, Lek S. 2015. A bibliometric analysis of scientific trends in phytoplankton research. Ann Limnol − Int J Limnol 51: 249–259. [CrossRef] [Google Scholar]
  • Weckström J, Lia M, Yu G, et al. 2015. Responses of aquatic ecosystems to environmental changes in Finland adn China. Front Ecol Evol 3: 1–14. [Google Scholar]
  • Witkowski A, Lange-Bertalot H, Metzeltin D. 2000. Diatom Flora of Marine Coasts I. Iconographia Diatomologica 7. A.R.G. Gantner Verlag K.G., Ruggell (Liechtenstein), 925 p. [Google Scholar]
  • Zelčs V, Markots A, Nartišs M, Saks T. 2011. Pleistocene glaciations in Latvia. In: Ehlers J, Gibbard PL, Huges PD, eds. Quaternary glaciations-extent and chronology, a closer look. Amsterdam: Elsevier, pp. 221–229. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.