Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 8
Number of page(s) 7
Published online 01 March 2018
  • Accoroni S, Percopo I, Cerino F, Romagnoli T, Pichierri S, Perrone C, Totti C. 2015. Allelopathic interactions between the HAB dinoflagellate Ostreopsis cf. ovata and macroalgae. Harmful Algae 49: 147–155. [CrossRef] [Google Scholar]
  • Arzul G, Seguel M, Guzman L, Denn EL. 1999. Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Biol Ecol 232: 285–295. [CrossRef] [Google Scholar]
  • Babica P, Bláha L, Maršálek B. 2006. Exploring the natural role of microcystins-a review of effects on photoautotrophic organisms. J Phycol 42: 9–20 [CrossRef] [Google Scholar]
  • Bar-Yosef Y, Sukenik A, Hadas O, Vinermozzini Y, Kaplan A. 2010. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20: 1557–1561. [CrossRef] [PubMed] [Google Scholar]
  • B-Béres V, Vasas G, Dobronoki D, Gonda S, Nagy SA, Bcsi I. 2015. Effects of cylindrospermopsin producing cyanobacterium and its crude extracts on a benthic green alga-competition or allelopathy? Mar Drugs 13: 6703–6722. [CrossRef] [Google Scholar]
  • Bittencourt-Oliveira MC, Chia MA, Arajo MKC, Molica RJR, Dias CTS. 2015. Allelopathic interactions between microcystin − producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27: 275–284. [CrossRef] [Google Scholar]
  • Cai L, Zhu G, Zhu M, Yang G, Zhao L. 2012. Succession of phytoplankton structure and its relationship with algae bloom in littoral zone of Meiliang Bay, Taihu Lake. Eco Sci 31: 345–351 (in Chinese with English abstract). [Google Scholar]
  • Campos A, Araujo P, Pinheiro C, Azvedo J, Osório H, Vasconcelos V. 2013. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotox Environ Saf 94: 45–53. [CrossRef] [Google Scholar]
  • DellaGreca M, Zarrelli A, Fergola P, Cerasuolo M, Pollio A, Pinto G. 2010. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modelling. J Chem Ecol 36: 339–349. [CrossRef] [PubMed] [Google Scholar]
  • Dong J, Lu JJ, Li GB, Song LR. 2013. Influences of a submerged macrophyte on colony formation and growth of a green alga. Aquat Biol 19: 265–274. [CrossRef] [Google Scholar]
  • Dong J, Zhou WC, Song LR, Li GB. 2015. Responses of phytoplankton functional groups to simulated winter warming. Ann Limnol Int J Lim 51: 199–210. [Google Scholar]
  • Dong J, Gao YN, Chang MY, Ma HH, Han K, Tao X, Li Y. 2018. Colony formation by the green alga Chlorella vulgaris in response to the competitor Ceratophyllum demersum. Hydrobiologia 805: 177–187. [CrossRef] [Google Scholar]
  • Dunker S, Jakob T, Wilhelm C. 2013. Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol 58: 1573–1587. [CrossRef] [Google Scholar]
  • Figueredo CC, Giani A, Bird DF. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43: 256–265. [CrossRef] [Google Scholar]
  • Leflaive J, Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters, a comparison of allelopathic compounds and toxins. Freshw Biol 52: 199–214. [CrossRef] [Google Scholar]
  • Leflaive J, Lacroix G, Nicaise Y, Ten-Hage L. 2008. Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales). Environ Microb 10: 1536–1546. [Google Scholar]
  • Legrand C, Rengefors K, Fistarol GO, Granéli E. 2003. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419. [CrossRef] [Google Scholar]
  • Lürling M. 2006. Effects of a surfactant (ffd-6) on Scenedesmus morphology and growth under different nutrient conditions. Chemosphere 62: 1351–1358. [CrossRef] [PubMed] [Google Scholar]
  • Lürling M, Van Donk E. 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol Oceanogr 42: 783–788. [CrossRef] [Google Scholar]
  • Ma ZL, Fang TX, Thring RW, Li YB, Yu HG, Zhou Q, Zhao M. 2015. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae 48: 21–29. [CrossRef] [PubMed] [Google Scholar]
  • Mello MME, Soares MCS, Roland F, Lürling M. 2012. Growth of inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. J Plankton Res 34: 987–994. [CrossRef] [Google Scholar]
  • Mulderij G, Mooij WM, Van Donk E. 2005. Allelopathic growth inhibition and colony formation of the green alga Scenedesmus obliquus by the aquatic macrophate Stratiotes aloides. Aquat Ecol 39: 11–21. [CrossRef] [Google Scholar]
  • Pakdel FM, Sim L, Beardall J, Davis J. 2013. Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat Bot 110: 24–30. [CrossRef] [Google Scholar]
  • Pflugmacher S. 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17: 407–413. [CrossRef] [PubMed] [Google Scholar]
  • Pinheiro C, Azvedo J, Campos A, Loureiro S, Vasconcelos V. 2013. Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia 705: 27–42. [CrossRef] [Google Scholar]
  • Pratt DM. 1966. Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr 11: 447–455. [CrossRef] [Google Scholar]
  • Rippka R, Rippk R, Deruelle J, Waterbury J, Herdman M, Stanier R. 1979. Generic assignments, strain histories and propertiesof pure cultures of cyanobacteria. J Gen Microb 111: 1–61. [Google Scholar]
  • Rzymski P, Poniedziałek B, Kokociński M, Jurczak T, Lipski D, Wiktorowicz K. 2014. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35: 1–8. [CrossRef] [Google Scholar]
  • Song L, Qin JG, Clarke S, Li Y. 2013. Competition and succession between the oily alga Botryococcus braunii and two green alga Chlorella vulgaris and Chlamydomonas reinhardtii. J Appl Phycol 25: 847–853. [CrossRef] [Google Scholar]
  • Suikkanen S, Fistarol GO, Graneli E. 2004. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308: 85–101. [CrossRef] [Google Scholar]
  • Sukenik A, Kaplan A. 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47: 1656–1663. [CrossRef] [Google Scholar]
  • Sun F, Pei H, Hu W, Song M. 2012. A multi-technique approach for the quantification of Microcystis aeruginosa FACHB-905 biomass during high algae-laden periods. Environ Technol 33: 1773–1779. [CrossRef] [PubMed] [Google Scholar]
  • Valdor R, Aboal M. 2007. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49: 769–779. [CrossRef] [PubMed] [Google Scholar]
  • Van Donk E, Ianora A, Vos M. 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19. [CrossRef] [Google Scholar]
  • Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A. 2002. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12: 1767–1772. [CrossRef] [PubMed] [Google Scholar]
  • Wang LC, Zi JM, Xu RB, Hilt S, Hou XL, Chang XX. 2017a. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: Evidence from exudates addition and co-culturing. Harmful algae 61: 56–62. [Google Scholar]
  • Wang R, Wang JT, Xue QN, Sha XY, Tan LJ, Guo X. 2017b. Allelopathic interactions between Skeletonema costatum and Alexandrium minutum. Chem Ecol 33: 485–498. [CrossRef] [Google Scholar]
  • Yang Z, Kong FX. 2012. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. J Limnol 71: 61–66. [CrossRef] [Google Scholar]
  • Yang Z, Kong FX, Zhang M, Yang Z, Yu Y, Qian SQ. 2009. Effect of filtered cultures of flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Int Rev Hydrobiol 94: 143–152. [CrossRef] [Google Scholar]
  • Yang J, Deng XR, Xian QM, Xin Q, Li AM. 2014. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemicals. Hydrobiologia 727: 65–73. [CrossRef] [Google Scholar]
  • Zhang P, Zhai CM, Wang XX, Liu CH, Jiang JH, Xue YR. 2013. Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25: 555–565. [CrossRef] [Google Scholar]
  • Zheng ZM, Bai PF, Lu KH, Jin CH, Zhang L. 2008. Growth characteristics and competitive parameters of Microcystis aeruginosa and Scenedesmus obliquus at different temperatures. Acta Hydrobiologica Sinica 32: 720–728 (in Chinese with English abstract). [Google Scholar]
  • Zhu XX, Wang J, Chen QW, Chen G, Huang Y, Yang Z. 2016. Costs and trade-offs of grazer induced defenses in Scenedesmus under deficient resource. Sci Rep 6: 22594. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.