Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 9
Number of page(s) 9
Published online 13 March 2018
  • Adrian R, Wilhelm S, Gerten D. 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Change Biol 12: 652–661. [CrossRef] [Google Scholar]
  • Anneville O, Gammeter S, Straile D. 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw Biol 50: 1731–1746. [CrossRef] [Google Scholar]
  • Becker V, Caputo L, Ordóñez J, Marcé R, Armengol J, Crossetti LO, Huszar VLM. 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res 44: 3345–3354. [Google Scholar]
  • Brookes JD, Carey CC. 2011. Resilience to blooms. Science 334: 46–47. [CrossRef] [PubMed] [Google Scholar]
  • Cai Q. 2007. Protocols for standard observation and measurement in aquatic ecosystems, Beijing: Chinese Environmental Science Press. [Google Scholar]
  • Coumou D, Robinson A, Rahmstorf S. 2013. Global increase in record-breaking monthly-mean temperatures. Clim Change 118: 771–782. [CrossRef] [Google Scholar]
  • Deng JM, Qin BQ, Sarvala J, Salmaso N, Zhu GW, Ventelä AM, Zhang YL, Gao G, Nurminen L, Kirkkala T, Tarvainen M, Vuorio K. 2016. Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu. J Great Lakes Res 42: 386–396. [CrossRef] [Google Scholar]
  • Dong BJ, Liu JS, Zhu YW, Yang Z. 2008. Study on the air temperature and rainfall characteristics of Dali city, China, in the last 45 years. China meteorological society 2008 convention on climate change at the venue ( in Chinese). [Google Scholar]
  • Dong C, Wu L, Lin P, Shan YP, Tan XM. 2012. Climate changing on landscape environment in Kunming in recent 60 years. Shandong For Sci Technol 3: 6–11 (in Chinese). [Google Scholar]
  • Dong J, Li GB, Song LR. 2014. Historical changes of phytoplankton functional groups in Lake Fuxian, Lake Erhai and Lake Dianchi since 1960s. J Lake Sci 26: 735–742 (in Chinese). [CrossRef] [Google Scholar]
  • Dong J, Zhou WC, Song LR, Li GB. 2015. Responses of phytoplankton functional groups to simulated winter warming. Ann Limnol − Int J Lim 51: 199–210. [CrossRef] [Google Scholar]
  • Elliott JA. 2012. Predicting the impact of changing nutrient load and temperature on the phytoplankton of England's largest lake, Windermere. Freshw Biol 57: 400–413. [Google Scholar]
  • Elliott JA, Thackeray SJ, Huntingford C, Jones RG. 2005. Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshw Biol 50: 1404–1411. [CrossRef] [Google Scholar]
  • Elliott JA, Jones ID, Thackeray SJ. 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559: 401–411. [CrossRef] [Google Scholar]
  • Feuchtmayr H, Thackeray SJ, Jones ID, De Ville M, Fletcher J, James B, Kelly J. 2012. Spring phytoplankton phenology are patterns and drivers of change consistent among lakes in the same climatological region? Freshw Biol 57: 331–344. [CrossRef] [Google Scholar]
  • Findlay DL, Kasian SEM, Stainton MP, Beaty K, Lyng M. 2001. Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnol Oceanogr 46: 1784–1793. [CrossRef] [Google Scholar]
  • Fu H, Yuan GX, Cao T, Zhong JY, Zhang XL, Guo LG, Zhang M, Ni LY, Wang SR. 2013. Succession of submerged macrophyte communities in relation to environmental change in Lake Erhai over the past 50 years. J Lake Sci 25: 854–861 (in Chinese). [CrossRef] [Google Scholar]
  • Gao W, Chen Y, Xu M, Guo HC, Xie YC. 2013. Trend and driving factors of water quality change in Lake Fuxian (1980–2011). J Lake Sci 25: 635–642 (in Chinese). [CrossRef] [Google Scholar]
  • Gkelis S, Papadimitriou T, Zaoutsos N, Leonardos I. 2014. Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae 39: 322–333. [CrossRef] [Google Scholar]
  • Gu GH. 2008. Analysis of water temperature characteristics and trend in Fuxianhu Lake. Pearl River 5: 38–39 (in Chinese). [Google Scholar]
  • Huang XF, Chen W, Cai Q. 2000. Survey, observation and analysis of lake ecosystem, Beijing: China Standards Press. [Google Scholar]
  • Huang HJ, Wang YP, Li QH. 2010. Evaporation variation from Erhai Lake and its controls under climatic warming. J Meteorol Environ 26: 32–35 (in Chinese). [Google Scholar]
  • Huber V, Wagner C, Gerten D, Adrian R. 2012. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169: 245–256. [CrossRef] [PubMed] [Google Scholar]
  • Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ, de Meester L, Søndergaard M, Lauridsen TL, Bjerring R, Conde-Porcuna JM, Mazzeo N, Iglesias C, Reizenstein M, Malmquist HJ, Liu ZW, Balayla D, Lazzaro X. 2010. Impacts of climate warming on lake fish community structure and dynamics, and potential ecosystem effects. Hydrobiologia 646: 73–90. [CrossRef] [Google Scholar]
  • Jöhnk K, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14: 495–512. [CrossRef] [Google Scholar]
  • Köhler J, Hilt S, Adrian R, Nicklisch A, Kozerski HP, Walz N. 2005. Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshw Biol 50: 1639–1650. [Google Scholar]
  • Kosten S, Huszar VLM, Bécares E, Costa LS, Van Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, Meester LD, Moss B, Lürling M, Nõges T, Romo S, Scheffer M. 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18: 118–126. [CrossRef] [Google Scholar]
  • Kumagai M. 2000. Seeking wisdom in limnology. Limnology 1: 1–2. [CrossRef] [Google Scholar]
  • Li GB, Li L, Pan M, Xie ZC, Li ZS, Xiao BD, Liu GH, Chen J, Song LR. 2014. The degradation cause and pattern characteristics of Lake Dianchi ecosystem and new restoration strategy of ecoregion and step-by-step implementation. J Lake Sci 26: 485–496 (in Chinese). [CrossRef] [Google Scholar]
  • Li ZK, Yang PP, Su SF. 2015. Eutrophication trend of Erhai Lake from 2004 to 2013. Environ Sci Surv 34: 1–3 (in Chinese). [Google Scholar]
  • Liu Z, Liu X, Chen Y. 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11 year investigation. Harmful Algae 10: 337–343. [CrossRef] [Google Scholar]
  • Mooij WM, Hülsmann S, De Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM, Miguel Dionisio Pires L, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR. 2005. The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39: 38–400. [Google Scholar]
  • Moss B, Mckee D, Atkinson D, Collings SE, Eaton JW, Gill AB, Harvey I, Hatton K, Heyes T, Wilson D. 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J Appl Ecol 40: 782–792. [CrossRef] [Google Scholar]
  • O'Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334. [CrossRef] [Google Scholar]
  • Ouyang ZH, Guo HC, Wang WJ, Gao W. 2015. Analysis of water quality change and impacts from socio-economic development in Lake Dianchi from 1982 to 2012. Environ Monit China, 31: 68–73. [Google Scholar]
  • Padisák J, Crossetti LO, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [CrossRef] [Google Scholar]
  • Padisák J, Hajnal É, Krienitz L, Lakner J, Üveges V. 2010. Rarity, ecological memory, rate of floral change in phytoplankton and the mystery of the Red Cock. Hydrobiologia 653: 45–64. [CrossRef] [Google Scholar]
  • Paerl HW, Huisman J. 2008. Climate − blooms like it hot. Science 320: 57–58. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microb Rep 1: 27–37. [Google Scholar]
  • Paerl HW, Paul VJ. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res 46 1349–1363. [CrossRef] [PubMed] [Google Scholar]
  • Pan JZ, Xiong F, Li WZ, Ke F. 2009. Structure, distribution and its impact factors of phytoplankton community in Fuxian Lake. Acta Ecol Sinica 29: 5376–5385 (in Chinese). [Google Scholar]
  • Posch T, Köster O, Salcher MM, Pernthaler J. 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Change 2: 809–813. [CrossRef] [Google Scholar]
  • Reynolds CS. 2006. The ecology of phytoplankton. Cambridge University Press. Cambridge [CrossRef] [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Rigosi A, Carey CC, Ibelings BW, Brookes JD. 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59: 99–114. [CrossRef] [Google Scholar]
  • Rinke K, Yeates P, Rothhaupt KO. 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshw Biol 55: 1674–1693. [Google Scholar]
  • Sheng H, Liu H, Wang C, Guo H, Liu Y, Yang Y. 2012. Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China. Ecol Inform 10: 37–48. [CrossRef] [Google Scholar]
  • Tadonléké RD. 2010. Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status. Limnol Oceanogr 55: 973–982. [CrossRef] [Google Scholar]
  • Tapolczai K, Anneville O, Padisaák J, Salmaso N, Morabito G, Zohary T, Tadonléké RD, Rimet F. 2015. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745: 17–29. [CrossRef] [Google Scholar]
  • Taranu ZE, Zurawell RW, Pick F, Eavas IG. 2012. Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Glob Change Biol 18: 3477–3490. [CrossRef] [Google Scholar]
  • Wagner C, Adrian R. 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54: 2460–2468. [CrossRef] [Google Scholar]
  • Walters AW, Sagrario MdlÁG, Schindler DE. 2013. Species- and community-level responses combine to drive phenology of lake phytoplankton. Ecology 94: 2188–2194. [CrossRef] [PubMed] [Google Scholar]
  • Wen HX, Ma GL. 2011. Study of water quality and algae in Erhai Lake during 2008–2010. Environ Sci Manage 36: 44–48 (in Chinese). [Google Scholar]
  • Yu D, Li FR, Wang JT. 2013. Water environment evolution and algae monitoring technology development in Lake Dianchi. Environ Sci Surv 32: 53–57. [Google Scholar]
  • Zhang M, Duan HT, Shi XL, Yu Y, Kong FX. 2012. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res 46: 442–452. [CrossRef] [PubMed] [Google Scholar]
  • Zhou J, Liang Z, Liu Y, Guo H, He D, Zhao L. 2015. Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift? Theor Appl Climatol 119: 181–191. [CrossRef] [Google Scholar]
  • Zhou QC, Zhang YL, Lin DM, Shan K, Luo Y, Zhao L, Tan ZW, Song LR. 2016. The relationships of meteorological factors and nutrient levels with phytoplankton biomass in a shallow eutrophic lake dominated by cyanobacteria, Lake Dianchi from 1991 to 2013. Environ Sci Pollut Res 23: 15616–15626. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.