Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 10
Number of page(s) 7
DOI https://doi.org/10.1051/limn/2017034
Published online 13 March 2018
  • Allan JD. 1995. Stream ecology. Structure and function of running waters. UK: Chapman and Hall, 431 p. [Google Scholar]
  • Balon EK. 1990. Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichth Rev 1: 1–48. [Google Scholar]
  • Bedoya D, Novotny V, Manolakos ES. 2009. Instream and off stream environmental conditions and stream biotic integrity. Importance of scale and site similarities for learning and prediction. Ecol Model 220: 2393–2406. [Google Scholar]
  • Beugly J, Pyron M. 2010. Temporal and spatial variation in the long-term functional organization of fish assemblages in a large river. Hydrobiologia 654: 215–226. [CrossRef] [Google Scholar]
  • Céréghino R, Park YS. 2009. Review of the self-organizing map (SOM) approach in water resources: Commentary. Environ Model Softw 24: 945–947. [CrossRef] [Google Scholar]
  • Chon TS. 2011. Self-organizing maps applied to ecological sciences. Ecol Inform 6: 50–61. [CrossRef] [Google Scholar]
  • Chon TS, Park YS, Moon KH, Cha EY. 1996. Patternizing communities by using an artificial neural network. Ecol Model 90: 69–78. [CrossRef] [Google Scholar]
  • Cummins KW, Wuycheck JC. 1971. Caloric equivalents for investigations in ecological energetics. Mitt Int Ver Limnol 18: 1–158. [Google Scholar]
  • Giraudel JL, Lek S. 2001. A comparison of self-organizing map algorithm and some conventional statistical method for ecological community ordination. Ecol Model 90: 69–78. [Google Scholar]
  • Jutagate T, Lek S, Sawusdee A, Sukdiseth U, Thapanand-Chaidee T, Thongkhoa S, Lek-Ang S, Chotipuntu P. 2011. Spatio-temporal variations in fish assemblages in a tropical regulated lower river course: an environmental guild. River Res Appl 27: 47–58. [CrossRef] [Google Scholar]
  • Kalteh AM, Hjorth P, Berndtsson R. 2008. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ Model Softw 23: 835–845. [CrossRef] [Google Scholar]
  • Klekowski R, Bęczkowski J. 1973. A new modification of micro-bomb calorimeter. Ekol Pol 21: 229–238. [Google Scholar]
  • Kohonen T. 2001. Self-organizing maps. Third Extended Edition. Berlin: Springer. [CrossRef] [MathSciNet] [Google Scholar]
  • Kruk A. 2006. Self-organizing maps in revealing variation in non-obligatory riverine fish in long-term data. Hydrobiologia 553: 43–57. [CrossRef] [Google Scholar]
  • Kruk A. 2007. Long-term changes in fish assemblages of the Widawka and Grabia Rivers (Poland): pattern recognition with a Kohonen artificial neural network. Int J Lim 43: 253–269 [CrossRef] [Google Scholar]
  • Kruk A, Penczak T. 2013. Natural regeneration of fish assemblages in the Pilica River after reduction of point source pollution. River Res Appl 29: 502–511. [CrossRef] [Google Scholar]
  • Kruk A, Lek S, Park YS, Penczak T. 2007. Fish assemblages in the large lowland Narew River system (Poland): Application of the self-organizing map algorithm. Ecol Model 203: 45–61. [CrossRef] [Google Scholar]
  • Matthews WJ. 1998. Patterns in freshwater fish ecology. New York: Chapman and Hall, Int. Thomson Publ., 756 p. [Google Scholar]
  • Noori R, Karbassi A, Sabahi MS. 2010. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. J Environ Manage 91: 767–771. [CrossRef] [PubMed] [Google Scholar]
  • Park YS, Tison J, Lek S, Giraudel JL, Coste M, Delmas F. 2006. Application of a self-organizing map to select representative species in multivariate analysis: a case study determining diatom distribution patterns across France. Ecol Inform 1: 247–257. [CrossRef] [Google Scholar]
  • Penczak T. 1981. Ecological fish production in two small lowland rivers in Poland. Oecologia (Berl.) 48: 107–111. [Google Scholar]
  • Penczak T. 2011a. Usefulness of the SOM for estimation of species distribution and significance in comparing hyabitats. J Appl Ichth 27: 1371–1374. [CrossRef] [Google Scholar]
  • Penczak T. 2011b. Fish assemblages composition in a natural, then regulated stream: a quantitative long-term study. Ecol Model 222: 2103–2118. [CrossRef] [Google Scholar]
  • Penczak T, Kruk A. 2005. Patternizing of impoundment impact (1985-2002) on fish assemblages in a lowland river using the Kohonen Algorithm. J Appl Ichth 21: 169–177. [CrossRef] [Google Scholar]
  • Penczak T, Molińaki M, Kusto E, Ichniowska B, Zalewski M. 1977. The ecology of roach, Rutilus rutilus (L.) in the barbel region of the polluted Pilica River. III. Lipids, protein, total nitrogen and caloricity. Ekol Pol 25: 75–88. [Google Scholar]
  • Penczak T, Suszycka E, Moliński M. 1982. Production, consumption and energy transformation by fish populations in a small lowland river. Ekol Pol 30: 111–137. [Google Scholar]
  • Penczak T, Kusto E, Krzyżanowska D, Molińsk M, Suszycka E. 1984. Food consumption and energy transformations by fish populations in two small lowland rivers in Poland. Hydrobiologia 108: 135–144. [CrossRef] [Google Scholar]
  • Penczak T, Kruk A, Park YS, Lek S. 2005. Patterning spatial variation in fish structures and diversity in the Pilica River system. In Lek S, Scardi M, Verdonschot PFM, Descy JP, Park YS, eds. Modelling Community Structure in Freshwater Ecosystems, pp. 100–113, Berlin, Heidelberg, New York: Springer-Verlag. [CrossRef] [Google Scholar]
  • Penczak T, Agostinho AA, Gomes LC, Latini JD. 2009. Impacts of a reservoir on fish assemblages of small tributaries of the Corumbá River, Brazil. River Res Appl 25: 1013–1024. [CrossRef] [Google Scholar]
  • Penczak T, Głowacki Ł, Kruk A, Galicka W. 2013. The role of streams of different sizes in recovery of fish fauna in the Pilica River catchment. River Res Appl 30: 1034–1047. [CrossRef] [Google Scholar]
  • Stojkovic M, Simic V, Milosevic D, Mancev D, Penczak T. 2013. Visualization of fish community distribution patterns using the self-organizing map: A case study of the Great Morava River system (Serbia). Ecol Model 248: 20–29. [CrossRef] [Google Scholar]
  • Tytler P, Calow P, eds. 1985. Fish energetics, new perspective. London, Sydney: Croom Helm, 349 p. [Google Scholar]
  • Vesanto J, Himberg E, Alhoniemi E, Parhankangas J. 2000. SOM Toolbox for Matlab 5. In: Technical Report A57, Helsinki, Finland: Neural Networks Research Centre, Helsinki University of Technology. [Google Scholar]
  • Wootton RJ. 1985. Energetics of reproduction. In Tytler P, Calow P, eds. Fish energetics, new perspective. pp. 231–254. London, Sydney: Croom Helm. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.