Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 7
Number of page(s) 7
Published online 01 March 2018
  • Acuña V, Wolf A, Uehlinger U, Tockner K. 2008. Temperature dependence of stream benthic respiration in an Alpine river network under global warming. Freshw Biol 53: 2076–2088. [CrossRef] [Google Scholar]
  • Azevedo-Pereira HVS, Graça MAS, González JM. 2006. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia 55: 183–192. [CrossRef] [Google Scholar]
  • Bärlocher F. 1992. The ecology of aquatic hyphomycetes. Berlin: Springer-Verlag. [CrossRef] [Google Scholar]
  • Bidinotto PM, Moraes G, Souza RHS. 1997. Hepatic glycogen and glucose in eight tropical freshwater teleost fish: a procedure for field determinations of micro samples. Bragantia 10: 53–60. [Google Scholar]
  • Bond-Buckup G, Buckup L. 1994. A família Aeglidae (Crustacea, Decapoda, Anomura). Arq Zool 32: 159–346. [CrossRef] [Google Scholar]
  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Towards a metabolic theory of ecology. Ecology 85: 1771–1789. [CrossRef] [Google Scholar]
  • Bücker F, Gonçalves R, Bond-Buckup G, Melo AS. 2008. Effects of environmental variables on the distribution of two freshwater crabs (Anomura: Aeglidae). J Crust Biol 28: 248–251. [CrossRef] [Google Scholar]
  • Buckup L, Dutra BK, Ribarcki FP, Fernandes FA, Noro CK, Oliveira GT, Vinagre AS. 2008. Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapoda) in its natural environment. Comp Biochem Physiol Part A Mol Integr Physiol 149: 59–67. [CrossRef] [Google Scholar]
  • Buzby KM, Perry SA. 2000. Modeling the potential effects of climate change on leaf pack processing in central Appalachian streams. Can J Fish Aquat Sci 57: 1773–1783. [CrossRef] [Google Scholar]
  • Canhoto C, Gonçalves AL, Barlocher F. 2016. Biology and ecological functions of aquatic hyphomycetes in a warming climate. Fungal Ecol 19: 201–218. [CrossRef] [Google Scholar]
  • Cerezer C, Biasi C, Cogo GB, Santos S. 2016. Avoid predation or take risks in basic activities? Predator-prey relationship in subtropical streams between decapods and caddisflies. Mar Freshw Res 67: 1880–1887. [CrossRef] [Google Scholar]
  • Chang E, O'Connor JD. 1983. Metabolism and transport of carbohydrates and lipids. In: Mantell LH, ed. The biology of Crustacea: internal anatomy and physiological regulation. New York: Academic Press, pp. 263–287. [CrossRef] [Google Scholar]
  • Chergui H, Pattee E. 1990. The influence of season on the breakdown of submerged leaves. Arch Hydrobiol 120: 1–12. [Google Scholar]
  • Claybrook DL. 1983. Nitrogen metabolism. In: Mantell LH, ed. The biology of Crustacea: internal anatomy and physiological regulation. New York: Academic Press, pp. 163–202. [CrossRef] [Google Scholar]
  • Cogo GB, Santos S. 2013. The role of aeglids in shredding organic matter in Neotropical streams. J Crust Biol 33: 519–526. [CrossRef] [Google Scholar]
  • Cogo GB, Biasi C, Santos S. 2014. The effect of the macroconsumer Aegla longirostri (Crustacea, Decapoda) on the invertebrate community in a subtropical stream. Acta Limnol Bras 26: 143–153. [CrossRef] [Google Scholar]
  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184. [Google Scholar]
  • Dall W, Moriarty DJW. 1983. Functional aspects of nutrition and digestion. In: Mantell LH, ed. The biology of Crustacea: internal anatomy and physiological regulation. New York: Academic Press, pp. 215–264. [CrossRef] [Google Scholar]
  • Dalosto M, Santos S. 2011. Differences in oxygen consumption and diel activity as adaptations related to microhabitat in Neotropical freshwater decapods (Crustacea). Comp Biochem Physiol Part A Mol Integr Physiol 160: 461–466. [CrossRef] [Google Scholar]
  • Demars BOL, Manso JR, Ólafsson JS, Gíslason GM. 2011. Temperature and the metabolic balance of streams. Freshw Biol 56: 1106–1121. [CrossRef] [Google Scholar]
  • Dutra BK, Santos RB, Bueno AAP, Oliveira GT. 2008. Seasonal variations in the biochemical composition and lipoperoxidation of Hyalella curvispina (Crustacea, Amphipoda). Comp Biochem Physiol Part A Mol Integr Physiol 151: 322–328. [CrossRef] [Google Scholar]
  • Ferreira BDP, Hack CS, Oliveira GT, Bond-Buckup G. 2005. Perfil metabólico de Aegla platensis Schmitt, 1942 (Crustacea, Anomura) submetida a dietas ricas em carboidratos ou proteínas. Rev Bras Zool 22: 161–168. [CrossRef] [Google Scholar]
  • Ferreira V, Chauvet E, Canhoto C. 2015. Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Can J Fish Aquat Sci 72: 206–216. [CrossRef] [Google Scholar]
  • Foucreau N, Cottin D, Piscart C, Hervant F. 2014. Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comp Biochem Physiol Part A Mol Integr Physiol 168: 69–75. [CrossRef] [Google Scholar]
  • Galbraith HS, Spooner DE, Vaughn CC. 2010. Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biol Conserv 143: 1175–1183. [CrossRef] [Google Scholar]
  • González JM, Graça MAS. 2003. Conversion of leaf litter to secondary production by a shredding caddisfly. Freshw Biol 48: 1578–1592. [CrossRef] [Google Scholar]
  • Graça MAS. 2001. The role of invertebrates on leaf litter decomposition in streams − a review. Internat Rev Hydrobiol 86: 383–393. [CrossRef] [Google Scholar]
  • Graça MAS, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolaño F, Wantzen KM, Boyero L. 2015. A conceptual model of litter breakdown in low order streams. Internat Rev Hydrobiol 100: 1–12. [CrossRef] [Google Scholar]
  • Hartnoll RG. 2001. Growth in Crustacea-twenty years on. Hydrobiologia 449: 111–122. [CrossRef] [Google Scholar]
  • Hervant F, Garin D, Mathieu J, Freminet A. 1999. Lactate metabolism and glucose turnover in the subterranean crustacean Niphargus virei during post-hypoxic recovery. J Exp Biol 205: 579–592. [Google Scholar]
  • Hu ASL. 1958. Glucose metabolism in the crab Hemigrapsus nudus. Arch Biochem Biophys 75: 387–395. [CrossRef] [PubMed] [Google Scholar]
  • IPCC. 2014. Climate change 2014: synthesis report. In Pachauri RK, Meyer LA, eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, IPCC, Geneva, Switzerland, 151 p. [Google Scholar]
  • Jimenez AG, Kinsey ST. 2015. Energetics and metabolic regulation. In: Chang ES, Thiel M, eds. The Natural History of Crustacean Series: Physiology. Oxford: Oxford University, pp. 389–417. [Google Scholar]
  • Koycheva J, Karney B. 2009. Stream water temperature and climate change − An ecological perspective. International Symposium on Water Management and Hydraulic Engineering A112. [Google Scholar]
  • Kucharski LCR, Da Silva RSM. 1991. Seasonal variation on the energy metabolism in an estuarine crab, Chasmagnathus granulata (Dana, 1851). Comp Biochem Physiol Part A Mol Integr Physiol 100: 599–602. [CrossRef] [Google Scholar]
  • Lagerspetz KYH, Vainio LA. 2006. Thermal behaviour of crustaceans. Biol Rev 81: 237–258. [CrossRef] [Google Scholar]
  • Langan SJ, Johnston L, Donaghy MJ, Youngson AF, Hay DW, Soulsby C. 2001. Variation in river water temperatures in an upland stream over a 30-year period. Sci Total Environ 265: 195–207. [CrossRef] [PubMed] [Google Scholar]
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275. [Google Scholar]
  • Lozán JL. 2000. On the threat to the European Crayfish: a contribution with the study of the activity behaviour of four crayfish species (Decapoda: Astacidae). Limnologica 30: 156–161. [CrossRef] [Google Scholar]
  • Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J. 2014. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol Ecol 87: 257–267. [CrossRef] [PubMed] [Google Scholar]
  • Matozzo V, Gallo C, Marin MG. 2011. Effects of temperature on cellular and biochemical parameters in the crab Carcinus aestuarii (Crustacea, Decapoda). Mar Environ Res 71: 351–356. [CrossRef] [PubMed] [Google Scholar]
  • Morrill JC, Bales RC, Conklin MH. 2005. Estimating stream temperature from air temperature: implications for future water quality. J Environ Eng 131: 139–146. [CrossRef] [Google Scholar]
  • Oliveira GT, Da Silva RSM. 1997. Glyconeogeneses in hepatopancreas from Chasmagnathus granulata crabs maintained on high- protein or carbohydrate-rich diets. Comp Biochem Physiol Part A Mol Integr Physiol 118: 1429–1435. [CrossRef] [Google Scholar]
  • Oliveira GT, Da Silva RSM. 2000. Hepatopancreas gluconeogenesis during hyposmotic stress in crabs Chasmagnathus granulata maintained on high-protein or carbohydrate-rich diets. Comp Biochem Physiol Part B Biochem Mol Biol 127: 375–381. [CrossRef] [Google Scholar]
  • Oliveira GT, Rossi ICC, Da Silva RSM. 2001. Carbohydrate metabolism during anoxia and pos-anoxia recovery in Chasmagnathus granulata crabs maintained on high-protein or carbohydrate-rich diets. Mar Biol 139: 335–342. [CrossRef] [Google Scholar]
  • Oliveira GT, Fernandes FA, Bond-Buckup G, Bueno AA, Da Silva RSM. 2003. Circadian and seasonal variations in the metabolism of carbohydrates in Aegla ligulata (Crustacea:Anomura: Aeglidae). Mem Mus Vic 60: 59–62. [CrossRef] [Google Scholar]
  • Oliveira GT, Eichler P, Rossi ICC, Da Silva RSM. 2004. Hepatopancreas gluconeogenesis during anoxia and post-anoxia recovery in Chasmagnathus granulata crabs maintained on high-protein or carbohydrate-rich diets. J Exp Zool Part A 301: 240–248. [CrossRef] [Google Scholar]
  • Oliveira GT, Fernandes FA, Bueno AA, Bond-Buckup G. 2007. Seasonal variations in the intermediate metabolism of Aegla platensis (Crustacea, Aeglidae). Comp Biochem Physiol Part A Mol Integr Physiol 147: 600–606. [CrossRef] [Google Scholar]
  • Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915. [CrossRef] [PubMed] [Google Scholar]
  • Sánchez-Paz A, García-Carreño F, Hernández-López J, Muhlia-Almazán A, Yepiz-Plascencia G. 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J Exp Mar Biol Ecol 340: 184–193. [CrossRef] [Google Scholar]
  • Santos S, Ayres-Peres L, Cardoso RCF, Sokolowicz CC. 2008. Natural diet of the freshwater anomuran Aegla longirostri (Crustacea, Anomura, Aeglidae). J Nat Hist 42: 1027–1037. [CrossRef] [Google Scholar]
  • Small DP, Calosi P, Boothroyd D, Widdicombe S, Spicer JI. 2015. Stage-specific changes in physiological and life-history responses to elevated temperature and PCO2 during the larval development of the European lobster Homarus gammarus (L.). Physiol Biochem Zool 88: 494–507. [CrossRef] [PubMed] [Google Scholar]
  • Sokolowicz CC, Ayres-Peres L, Santos S. 2007. Atividade nictimeral e tempo de digestão de Aegla longirostri (Crustacea, Decapoda, Anomura). Iheringia Ser Zool 97: 235–238. [CrossRef] [Google Scholar]
  • Spies JR. 1957. Colorimetric procedures for amino acids. Meth Enzimol 3: 467–477. [CrossRef] [Google Scholar]
  • Trevisan A, Hepp LU, Santos S. 2009. Abundância e distribuição de Aeglidae (Crustacea:Anomura) em função do uso da terra na bacia hidrográfica do Rio Jacutinga, Rio Grande do Sul, Brazil. Zoologia 26: 419–426. [CrossRef] [Google Scholar]
  • Turra A, Denadai MR. 2003. Daily activity of four tropical intertidal hermit crabs from southeastern Brazil. Braz J Biol 63: 537–544. [CrossRef] [Google Scholar]
  • Vernberg FJ. 1982. Respiratory adaptations. In Vernberg FJ, Vernberg WB, eds. The biology of crustacea: environmental adaptations. New York: Academic Press, pp. 1–42. [Google Scholar]
  • Vinagre AS, Da Silva RSM. 1992. Effects of starvation on the carbohydrate and lipid metabolism in crabs previously maintained on a high-protein or carbohydrate-rich diet. Comp Biochem Physiol Part A Mol Integr Physiol 102: 579–583. [CrossRef] [Google Scholar]
  • Walther GR, Post E, Convey P, Menzel A, Parmesan KC, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416: 389–395. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.