Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 6
Number of page(s) 8
DOI https://doi.org/10.1051/limn/2018001
Published online 01 March 2018
  • Abrantes N, Nogueira A, Goncalves F. 2009. Short-term dynamics of cladocerans in a eutrophic shallow lake during a shift in the phytoplankton dominance. Ann Limnol − Int J Lim 45: 237–245. [CrossRef] [Google Scholar]
  • Ahlgren G, Lundstedt L, Brett M, Forsberg C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12: 809–818. [CrossRef] [Google Scholar]
  • Bownik A. 2016. Harmful algae: effects of cyanobacterial cyclic peptides on aquatic invertebrates − a short review. Toxicon 124: 26–35. [CrossRef] [Google Scholar]
  • Carmichael WW. 2001. Health effects of toxin- producing Cyanobacteria: the CyanoHABs. Hum Ecol Risk Assess 7: 1393–1407. [Google Scholar]
  • Chislock MF, Sarnelle O, Jernigan LM, Wilson AE. 2013. Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Wat Res 47: 1961–1970. [CrossRef] [Google Scholar]
  • Cyr H, Curtis JM. 1999. Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: 306–315. [CrossRef] [PubMed] [Google Scholar]
  • Davis TW, Gobler CJ. 2011. Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay. J Plankton Res 33: 415–430. [CrossRef] [Google Scholar]
  • Davis TW, Koch F, Marcoval MA, Wilhelm S, Gobler CJ. 2012. Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae 15: 26–35. [CrossRef] [Google Scholar]
  • DeMott WR, Gulati RD, Van Donk E. 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol Oceanogr 46: 2054–2060. [CrossRef] [Google Scholar]
  • Deng D, Xie P, Zhou Q, Hua Y, Longgen G, Hong G. 2008. Field and experimental studies on the combined impacts of cyanobacterial blooms and small algae on crustacean zooplankton in a large, eutrophic, subtropical, Chinese lake. Limnology 9: 1–11. [CrossRef] [Google Scholar]
  • Dietrich D, Hoeger S. 2005. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharm 203: 273–289. [CrossRef] [Google Scholar]
  • Elbourn CA. 1966. Some observations on the food of Cyclops strenuus strenuus (Fisher). Ann Mag Nat Hist 13: 227–231. [CrossRef] [Google Scholar]
  • EN 15204:2006. 2000. Water quality. Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermoehl technique) 29th September 2006, European Parliament Council. Directive 2000/60/EC of the European Parliament and of the council of 23rd October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L327: 1–72. [Google Scholar]
  • Fulton RS, Paerl HW. 1987. Toxic and inhibitory effects of the blue-green-alga Microcystis aeruginosa on herbivorous zooplankton. J Plankton Res 9: 837–855. [CrossRef] [Google Scholar]
  • Gannon JE, Gannon SA. 1975. Observations on the narcotization of crustacean zooplankton. Crustaceana 28: 220–224. [CrossRef] [Google Scholar]
  • Ger KA, Hansson LA, Lurling M. 2014. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Fresh Biol 59: 1783–1798. [Google Scholar]
  • Guo NC, Xie P. 2006. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. Environ Poll 143:513–518. [CrossRef] [Google Scholar]
  • Haberman J, Laugaste R, Nõges T. 2007. The role of cladocerans reflecting the trophic status of two large and shallow Estonian lakes. Hydrobiologia 584: 157–166. [CrossRef] [Google Scholar]
  • Hansson LA, Gustafsson S, Rengefors K, Bomark L. 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Fresh Biol 52: 1290–1301. [CrossRef] [Google Scholar]
  • Herrera N, Echeverri LF, Ferrão-Filho AS. 2015. Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon 95: 38–45. [CrossRef] [PubMed] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Hopp U, Maier G, Bleher R. 1997. Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshw Biol 38: 289–300. [CrossRef] [Google Scholar]
  • Iglesias C, Mazzeo N, Meerhoff M, et al. 2011. High predation is the key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147. [CrossRef] [Google Scholar]
  • Infante A. 1978. A method for the study of foods of herbivorous zooplankton. Trans Amer Micros Soc 97: 256–258. [CrossRef] [Google Scholar]
  • Infante A, Riehl W. 1984. The effect of cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Hydrobiologia 113: 293–298. [CrossRef] [Google Scholar]
  • Jiang X, Li Q, Liang H, Zhao S, Zhang L, Zhao Y. 2013. Clonal variation in growth plasticity within a Bosmina longirostris population: the potential for resistance to toxic cyanobacteria. PLoS ONE 8: e73540. [CrossRef] [PubMed] [Google Scholar]
  • Jiang X, Yang W, Zhang L, Chen L, Niu Y. 2014. Predation and cyanobacteria jointly facilitate competitive dominance of small-bodied cladocerans. J Plankton Res 36: 956–965. [CrossRef] [Google Scholar]
  • Ka S, Mendoza-Vera JM, Bouvy M, Champalbert G, N'gom-Ka R, Pagano M. 2012. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679: 119–138. [CrossRef] [Google Scholar]
  • Kerfoot WC, Kirk KL. 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods: implications for detritivory and herbivory. Limnol Oceanogr 36: 1107–1123. [CrossRef] [Google Scholar]
  • Kirk KL, Gilbert JJ. 1992. Variation in herbivore response to chemical defences-zooplankton foraging on toxic cyanobacteria. Ecology 73: 2208–2217. [CrossRef] [Google Scholar]
  • Lacerot G, Kruk C, Lurling M, Scheffer M. 2013. The role of subtropical zooplankton s grazers of phytoplankton under different predation levels. Fresh Biol 58: 494–503. [CrossRef] [Google Scholar]
  • Lawton LA, Edwards C, Codd GA. 1994. Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119: 1525–1530. [CrossRef] [PubMed] [Google Scholar]
  • Levine SN, Borchardt MA, Braner M, Shambaugh A. 1999. The impact of zooplankton grazing on phytoplankton species composition and biomass in lake Champlain (USA-Canada). J Great Lakes Res 25: 61–77. [CrossRef] [Google Scholar]
  • Lin KY, Sastri AR, Gong GC, Hsieh CH. 2013. Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: a test of metabolic theory of ecology. Biogeosciences 10: 1877–1892. [CrossRef] [Google Scholar]
  • Oberhaus L, Gélinas M, Pinel-Alloul B, Ghadouani A, Humbert JF. 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. J Plankton Res 29: 827–838. [CrossRef] [Google Scholar]
  • Pawlik-Skowrońska B, Toporowska M. 2016. How to mitigate cyanobacterial blooms and cyanotoxin production in eutrophic water reservoirs? Hydrobiologia 778: 45–59. [CrossRef] [Google Scholar]
  • Pearl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecol 65: 995–1010. [Google Scholar]
  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA. 1998. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Bioch et Bioph Acta 1425: 527–533. [CrossRef] [Google Scholar]
  • Reichwaldt ES, Song H, Ghadouani A. 2013. Effects of the distribution of a toxic Microcystis bloom on the small scale patchiness of Zooplankton. PLoS ONE 8: e66674. [CrossRef] [PubMed] [Google Scholar]
  • Soares MCS, Lürling M, Panosso R, Huszar V. 2009. Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. Ecotoxicol Environ Saf 72: 1183–1189. [CrossRef] [PubMed] [Google Scholar]
  • Solis M. 2012. Impact of Wieprz-Krzna Canal on physical-chemical and biological characteristics in selected storage reservoirs. Inż Ekol 29: 182–191 (in Polish). [Google Scholar]
  • Solis M, Pawlik-Skowrońska B, Kalinowska R. 2015. Development of toxin-producing cyanobacteria during the water level manipulation in a shallow heavily modified lake. Oceanol Hydrobiol Stud 44: 223–235. [CrossRef] [Google Scholar]
  • Solis M, Pawlik-Skowrońska B, Kalinowska R. 2016. Seasonal changes of phytoplankton and cyanobacteria/cyanotoxin risk in two shallow morphologically altered lakes: effects of water level manipulation (Wieprz-Krzna Canal System, Eastern Poland). Ecol Indic 66: 103–112. [CrossRef] [Google Scholar]
  • Sommer U, Gliwicz ZM, Lampert W, Duncan A. 1986. The PEG-model of seasonal succession of planktonic event in fresh waters. Arch Hydrobiol 106: 433–471. [Google Scholar]
  • Straile D, Müller H. 2010. Response of Bosmina to climate variability and reduced nutrient loading in a large lake. Limnologica 40: 92–96. [CrossRef] [Google Scholar]
  • Taipale SJ, Brett MT, Pulkkinen K, Kainz MJ. 2012. The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiol Ecol 82: 50–62. [CrossRef] [PubMed] [Google Scholar]
  • Tango PJ, Butler W. 2008. Cyanotoxins in tidal waters of Chesapeake Bay. Northeast Nat 15: 403–416. [CrossRef] [Google Scholar]
  • Thys I, Leporcq B, Descy J-P. 2003. Seasonal shifts in phytoplankton ingestion by Daphnia galeata, assessed by analysis of marker pigments. J Plankton Res 25: 1471–1484. [CrossRef] [Google Scholar]
  • Tõnno I, Agasild H, Kõiv T, Freiberg R, Nõges P, Nõges T. 2016. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS ONE 11: e0154526. [CrossRef] [PubMed] [Google Scholar]
  • Toporowska M, Pawlik-Skowronska B, Kalinowska R. 2014. Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus spp. (Diptera: Chironomidae). Eur J Entomol 111: 83–90. [CrossRef] [Google Scholar]
  • Trinchet I, Cadel-Six S, Djediat C, et al. 2013. Toxicity of harmful cyanobacterial blooms to bream and roach. Toxicon 71: 121–127. [CrossRef] [PubMed] [Google Scholar]
  • Wacker A, Martin-Creuzburg D. 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct Ecol 21: 738–747. [CrossRef] [Google Scholar]
  • Wichard T, Gerecht A, Boersma M, Poulet SA, Wiltshire K, Pohnert G. 2007. Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Chembiochem 8: 1146–53. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.