Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 3
Number of page(s) 9
Published online 04 January 2018
  • Agawin NSR, Rabouille S, Veldhuis MJW, Servatius LS, Hol HM, van Overzee J, Huisman J. 2007. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol Oceanogr 52: 2233–2248. [CrossRef] [Google Scholar]
  • APHA. 2005. Standard methods for the examination of water and wastewater, 21st edn. USA: American Public Health Association. [Google Scholar]
  • Bonilla S, Aubriot L, Soares CS, Gozález-Piana M, Fabre Huszar VL, Lürling M, Antoniades D, Padisák J, Kruk C. 2012. What drives the distribution of the Bloom-forming Cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79: 594–607. [CrossRef] [PubMed] [Google Scholar]
  • Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VT, Rangel LM, Azevedo SM, Neilan BA. 2016. Understanding the winning strategies used by the bloom-forming Cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54: 44–53. [CrossRef] [PubMed] [Google Scholar]
  • Carmichael WW, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae 54: 194–212. [CrossRef] [PubMed] [Google Scholar]
  • Chellappa NT, Medeiros CMA. 2003. Dominant and co-existing species of Cyanobacteria from a Eutrophicated reservoir of Rio Grande do Norte State, Brazil. Acta Oecol 24: S3–S10. [Google Scholar]
  • Chorus I, Bartram J. 1999. Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring, and management. London: St Edmundsbury Press. [CrossRef] [Google Scholar]
  • Cires S, Ballot A. 2016. A review of the phylogeny, ecology and taxonomy of bloom forming Aphanizomenon spp. and related species within the Nostocales (Cyanobacteria). Harmful Algae 54: 21–43. [CrossRef] [PubMed] [Google Scholar]
  • de Tezanos Pinto P, Litchman EB. 2010a. Eco-physiological responses of nitrogen-fixing cyanobacteria to light. Hydrobiologia 639: 63–68. [CrossRef] [Google Scholar]
  • de Tezanos PP, Litchman EA. 2010b. Interactive effects of N:P ratios and light on nitrogen-fixer abundance. Oikos 119: 567–575. [CrossRef] [Google Scholar]
  • Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C. 2012. Cyanobacteria and Cyanotoxins: the influence of Nitrogen versus Phosphorus. PLoS One 7: 1–14. [CrossRef] [Google Scholar]
  • Drobac D, Tokodi N, Simeunovic J, Baltic V, Stanic D, Svircev Z. 2013. A review: human exposure to cyanotoxins and their effects on health. Arh Hig Rada Toksikol 64: 305–316. [CrossRef] [Google Scholar]
  • Fay P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56: 340–373. [PubMed] [Google Scholar]
  • Ferber LR, Levine SN, Lini A, Livingston GP. 2004. Do Cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biol 49: 690–708. [CrossRef] [Google Scholar]
  • Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87–97. [CrossRef] [PubMed] [Google Scholar]
  • Havens K.E. 2008. Cyanobacterial blooms: effects on aquatic ecosystems. In: Hudnell HK, ed. Cyanobacterial harmful algal blooms: state of the science and research needs. Germany: Springer-Verlag, pp. 733–747. [CrossRef] [Google Scholar]
  • Havens KE, Phlips EJ, Cichra MF, Li BL. 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biol 39: 547–556. [CrossRef] [Google Scholar]
  • Huisman JM, Matthijs HCP, Visser PM. 2005. Harmful cyanobacteria. Aquatic ecology series 3. Dordrecht, The Netheralands: Springer. [CrossRef] [Google Scholar]
  • Jacobsen BA, Simonsen P. 1993. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia 249: 9–14. [CrossRef] [Google Scholar]
  • Koenings JP, Edmundson JA. 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnol Oceanogr 36: 91–105. [CrossRef] [Google Scholar]
  • Komárek J. 2013. Cyanoprokaryota.Teil/3rd part: heterocytous genera. In: Büdel , Gärtner L, Krienitz M, Chagerl M, eds. Süswasserflora von Mitteleuropa (Freshwater flora of Central Europe). Heidelberg, Berlin: Springer Spektrum. [Google Scholar]
  • Komárek J, Anagnostidis K. 1999. Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer H, eds. Süßwasserflora von Mitteleuropa, Gustav Fischer, Boston, Lancaster (1999), p. 548. [Google Scholar]
  • Komárek J, Anagnostidis K. 2005. Cyanoprokaryota 2. Teil/ 2nd Part: Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, y Scnagerl M, eds. Süsswasserflora von Mitteleuropa, Elsevier/Spektrum, Heidelberg, p. 759. [Google Scholar]
  • Komárek J, Johansen JR. 2015. Coccoid cyanobacteria. In: Wehr JD, Sheath RG, Kociolek RP, eds. Freshwater algae from North America: ecology and classification. Academic Press, United Kingdom, pp. 75–133. [CrossRef] [Google Scholar]
  • Kromkamp J. 1987. Formation and functional significance of storage products in cyanobacteria. New Zeal J Mar Fresh Res 21: 457–465. [CrossRef] [Google Scholar]
  • Lepš J, Šmilauer P. 1999. Multivariate analysis of ecological data. Czech Republic: University of South Bohemia Ceské Budejovice. [Google Scholar]
  • Li R, Wilhelm SW, Carmichael WW, Makoto M. 2008. Watanabe Polyphasic characterization of water bloom forming Raphidiopsis species (Cyanobacteria) from central China. Harmful Algae 7: 146–153. [CrossRef] [Google Scholar]
  • Li X, Dreher TW, Li R. 2016. An overview of diversity, occurrence, and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54: 54–68. [CrossRef] [PubMed] [Google Scholar]
  • Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VL. 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol 58: 552–559. [CrossRef] [Google Scholar]
  • Malone CFS, Santos KRS, Sant'Anna CL. 2012. Algas e cianobactérias de ambientes extremos do Pantanal Brasileiro. Oecol Aust 16: 745–755. [CrossRef] [Google Scholar]
  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O. 2013. State of knowledge and concerns on Cyanobacterial blooms and cyanotoxins. Environ Int 59: 303–327. [CrossRef] [PubMed] [Google Scholar]
  • Mugidde R, Hecky RE, Hendzel LL, Taylor WD. 2003. Pelagic nitrogen fixation in lake Victoria (East Africa). J Gt Lakes Res 29: 76–88. [CrossRef] [Google Scholar]
  • Nalewajko C, Murphy TP. 2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2: 45–48. [CrossRef] [Google Scholar]
  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful Cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334. [CrossRef] [Google Scholar]
  • Oren A. 2000. Salt and brines. In: Whitton BA, Potts M, eds. The ecology of Cyanobacteria. The Netherlands: Kluer Academic Publishers, pp. 281–306. [Google Scholar]
  • Padisák J, Crossetti L, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [CrossRef] [Google Scholar]
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful Cyanobacterial blooms. Environ Microbiol Rep 1: 27–37. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Otten TG. 2013. Harmful Cyanobacterial bloom: causes, consequences and controls. Microb Ecol 65: 995–1010. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, Qin B, Scott JT. 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and antropogenic nutrients. Harmful Algae 54: 213–222. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds CS. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biol 14: 111–142. [CrossRef] [Google Scholar]
  • Reynolds CS. 1997. Vegetation Processes in the Pelagic: A model for Ecosystems Theory Excellence in Ecology, Ecology Institute, Odendorf. [Google Scholar]
  • Reynolds CS. 2006. The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press. [Google Scholar]
  • Reynolds CS, Huszar VLM, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Santos KRS, Sant'Anna CL. 2010. Cyanobacteria from different types of lakes (“salina”, “salitrada” and “baía”) representative of the Pantanal da Nhecolândia, MS, Brazil. Braz J Bot 33: 61. [Google Scholar]
  • Smayda TJ. 1997. What is a bloom? A commentary. Limnol Oceanogr 42: 1132–1136. [CrossRef] [Google Scholar]
  • Stucken K, John U, Cembella A, Murillo AA, Soto-Liebe K, Fuentes-Valdés JJ, Friedel M, Plominsky AM, Vásquez M, Glöckner G. 2010. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. PLoS One 5: e9235. [CrossRef] [PubMed] [Google Scholar]
  • ter Braak CJ, Šmilauer P. 2012. Canoco reference manual and user's guide: software for ordination, version 5.0. Ithaca: Microcomputer Power. [Google Scholar]
  • Tonk L, Bosch K, Visser PM, Huisman VJ. 2007. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat Microb Ecol 46: 117–123. [CrossRef] [Google Scholar]
  • UNESCO. 2006. Evaluación de los Recursos Hídricos. Elaboración del balance hídrico integral por cuencas hidrográficas. Documentos Técnicos del PHI-LAC, N°4. [Google Scholar]
  • Utermöhl H. 1958. ZurVervollkommnung der quantitative Phytoplankton: methodik. Mitt Int Verein Theor Angew 9: 1–38. [Google Scholar]
  • Whitton BA, Potts M. 2000. The ecology of cyanobacteria. Their diversity in time and space. Dordrecht, London: Kluwer Academic Publishers. [Google Scholar]
  • Wiedner C, Rücker AJ, Brüggemann R, Nixdorf B. 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152: 473–484. [CrossRef] [PubMed] [Google Scholar]
  • World Health Organization. 2003. World Health Report. Shaping the future. Geneva: World Health Organization, 204 p. [Google Scholar]
  • Zapomělová E, Hrouzek P, Řeháková K, Šabacká M, Stibal CL, Komárková J, Lukesová A. 2008. Morphological variability in selected heterocystous Cyanobacterial strains as a response to varied temperature, light intensity and medium composition. Folia Microbiol 53: 333–341. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.