Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 2
Number of page(s) 15
DOI https://doi.org/10.1051/limn/2017029
Published online 04 January 2018
  • ABHS. 2007. Situation hydrologique du Bassin de Sebou, année hydrologique 2006/2007. Bulletin de l'Agence Hydraulique du Bassin du Sebou (ABHS), no. 20, 19 pp. [Google Scholar]
  • ABHS. 2009. Situation hydrologique du Bassin de Sebou, année hydrologique 2008/2009. Bulletin de l'Agence Hydraulique du Bassin du Sebou (ABHS), no. 21, 24 pp. [Google Scholar]
  • ACIA. 2004. Impacts of a warming Arctic: arctic climate impact assessment, Cambridge University Press, 140 p. Available at: http://www.acia.uaf.edu. [Google Scholar]
  • Adrian R, O'Reilly CM, Zagarese H, et al. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54: 2283. [CrossRef] [PubMed] [Google Scholar]
  • Arhonditsis GB, Brett MT, DeGasperi CL, Schindler DE. 2004. Effects of climatic variability on the thermal properties of Lake Washington. Limnol Oceanogr 49: 256–270. [CrossRef] [Google Scholar]
  • Arvola L, George G, Livingstone DM, et al. 2009. The impact of the changing climate on the thermal characteristics of lakes. In: George G, Ed. The Impact of Climate Change on European Lakes. Netherlands: Springer, pp. 85–101, http://link.springer.com/chapter/10.1007/978-90-481-2945-4_6 (Accessed 29 November 2015). [CrossRef] [Google Scholar]
  • Austin JA, Colman SM. 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys Res Lett 34: L06604, DOI:10.1029/2006GL029021. [CrossRef] [Google Scholar]
  • Barker PA, Roberts N, Lamb HF, Van Der Kaars S, Benkaddour A. 1994. Interpretation of Holocene lake‐level change from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. J Paleolimnol 12: 223–234. [CrossRef] [Google Scholar]
  • Bayer TK, Burns CW, Schallenberg M. 2013. Application of a numerical model to predict impacts of climate change on water temperatures in two deep, oligotrophic lakes in New Zealand. Hydrobiologia 713: 53–71. [CrossRef] [Google Scholar]
  • Boehrer B, Schultze M. 2008. Stratification of lakes. Rev Geophys 46: 1–27, DOI:10.1029/2006RG000210. [Google Scholar]
  • Brown LC, Duguay CR. 2010. The responses and role of ice cover in lake − climate interactions. Prog Phys Geogr 34: 671–703, DOI:10.1177/0309133310375653. [CrossRef] [Google Scholar]
  • Brown RS, Hubert WA, Daly SF. 2011. A primer on winter, ice, and fish: what fisheries biologists should know about winter ice processes and stream-dwelling fish. Fisheries 36: 8–26, DOI:10.1577/03632415.2011.10389052. [CrossRef] [Google Scholar]
  • Butcher JB, Nover D, Johnson TE, Clark CM. 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Clim Change 129: 295–305, DOI:10.1007/s10584-015-1326-1. [CrossRef] [Google Scholar]
  • Carpenter SR et al. 2007. Understanding regional change: a comparison of two lake districts. Bioscience 57: 323–335. [CrossRef] [Google Scholar]
  • Cherkaoui I, Bouchafra A. 2003. Fiche descriptive sur les zones humides Ramsar (FDR). [Book in French], Wetlands International Publ. Available at: https://www.wetlands.org/ [Google Scholar]
  • Coats R, Perez-Losada J, Schladow G, Richards R, Goldman C. 2006. The warming of Lake Tahoe. Clim Change 76: 121–148. [CrossRef] [Google Scholar]
  • Conversa G, Bonasia A, Di Gioia F, Elia A. 2015. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II-model calibration and validation under different environmental growing conditions on field grown tomato, Frontiers in plant science, Vol. 6. [Google Scholar]
  • Dumont HJ, Miron I, Dall'Asta U, Decraemer W, Claus C, Somers D. 1973. Limnological aspects of some Moroccan lakes. Int Revue Ges Hydrobiol 58: 33–60. [CrossRef] [Google Scholar]
  • El Hamouti N. 2003. Changements Hydrologiques et Climatiques dans le Moyen Atlas marocain depuis 18 Ka BP. à partir de l'étude des diatomées du site de Tigalmamine, Doctorat ès Sciences de l'Université Mohamed I, 300 p., 23 Pls. [Google Scholar]
  • El Hamouti N, Lamb H, Fontes J.−Ch, Gasse E. 1991. Changements hydroclimatiques abrupts dans le Moyen Atlas marocain depuis le dernier maximum glaciaire. Comptes-Rendus Acad Sci Paris t. 313 II, 259–265. [Google Scholar]
  • Elkhiati N. 1987. Les Characées (macroalgues) du Maroc: biotypologie dans les eaux continentales et production dans les dayas. Marseille 1: Thèse 3eme cycle, 115 p. [Google Scholar]
  • Elkhiati N. 1995. Biotypologie et biogéographie des Charophycées du Maroc. Contribution à l'étude des peuplements d'algues et de macrophytes de l'hydrosystème de Tamaris (Meseta occidentale). Marrakech: Thèse d'Etat, Fac. Sci. Semlalia, 155 p. [Google Scholar]
  • El-Nasr AA, Arnold JG, Feyen J, Berlamont J. 2005. Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrol Process 19: 573–587. [CrossRef] [Google Scholar]
  • Elo AR, Huttula T, Peltonen A, Virta J. 1998. The effects of climate change on the temperature conditions of lakes. Boreal Environ Res 3: 137–150. [Google Scholar]
  • Ferris JM, Burton HR. 1988. The annual cycle of heat-content and mechanical stability of Deep Lake, Vestfold Hills, Antartica. Hydrobiologia 165: 115–128. [CrossRef] [Google Scholar]
  • Fink G, Schmid M, Wahl B, Wolf T, Wüest A. 2014. Heat flux modifications related to climate-induced warming of large European lakes. Water Resour Res 50: 2072–2085. [CrossRef] [Google Scholar]
  • Flower RJ, Foster IDL. 1992. Climatic implications of recent changes in lake level at Lac Azigza (Morocco). Bull Soc Géol France 163: 91–96. [Google Scholar]
  • Gayral R. 1954. Recherches phytolimnologiques au Maroc. Trav. Inst. Sci. Ch6rif., Sdr. Bot., Rabat 4: 1–306. [Google Scholar]
  • Gerten D, Adrian R. 2001. Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr 46: 448–455. [CrossRef] [Google Scholar]
  • Gupta HV, Sorooshian S, Yapo PO. 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4: 135–143. [CrossRef] [Google Scholar]
  • Haddout S, Igouzal M, Maslouhi A. 2016. Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco) − effect of the “Super Blood Moon” (total lunar eclipse) of 2015. Hydrol Earth System Sci 20: 3923–3945. [Google Scholar]
  • Haddout S, Maslouhi A, Igouzal M. 2017a. Predicting of salt water intrusion in the Sebou river estuary (Morocco). J Appl Water Eng Res 5: 40–50. [Google Scholar]
  • Haddout S, Maslouhi A. 2017b. Two-dimensional modeling of the vertical circulation of salt intrusion in the Sebou estuary under different hydrological conditions. ISH J Hydraul Eng 1–18, in press. [Google Scholar]
  • Hampton SE, Izmest E, Lyubov R, et al. 2008. Sixty years of environmental change in the world's largest freshwater lake-Lake Baikal, Siberia. Global Change Biol 14: 1947–1958. [Google Scholar]
  • Harchrass A, Elkharrim K, et Belghyti D. 2012. Analyse physico-chimiques des eaux du site Ramsar Sidi Boughaba (Maroc). ScienceLib Editions Mersenne 4: 120607. [Google Scholar]
  • Harchrass A, Elkharrim K, et Belghyti D. 2015. Analyse en composantes principales (ACP) Des eaux du site Ramsar Sid Boughaba Maroc (Janvier 2012–Décembre 2014). ScienceLib Editions Mersenne 7: 150806. [Google Scholar]
  • Hondzo M, Stefan HG. 1993. Regional water temperature characteristics of lakes subjected to climate change. Clim Change 24: 187–211, DOI:10.1007/BF01091829. [CrossRef] [Google Scholar]
  • Hutchinson GE. 1957. A Treatise on Limnology, vol. 1. John Wiley & Sons, Inc., New York. Idso, SB, 1973. On the concept of lake stability. Limnol Oceanogr 18: 681–683. [Google Scholar]
  • Imberger J, Patterson JC. 1990. Physical limnology. Adv Appl Mech 27: 303–475. [Google Scholar]
  • IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva: IPCC, 151 p. [Google Scholar]
  • Jankowski T, Livingstone DM, Buhrer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51: 815–819, https://doi.org/10.4319/lo.2006.51.2.0815. [CrossRef] [Google Scholar]
  • Joehnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14: 495–512, DOI:10.1111/j.1365-2486.2007.01510.x. [CrossRef] [Google Scholar]
  • Jolicoeur B. 2002. Screening designs sensitivity of a nitrate leaching model (ANIMO) using a one-at-a-time method. USA: State University of New York at Binghampton. [Google Scholar]
  • Kao Y-C, Madenjian CP, Bunnell DB, Lofgren BM, Perroud M. 2015. Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron. J Great Lakes Res 41: 423–435, https://doi.org/10.1016/j.jglr.2015.03.012. [CrossRef] [Google Scholar]
  • Keller W. 2007. Implications of climate warming for Boreal Shield lakes: a review and synthesis. Environ Rev 15: 99–112, DOI:10.1139/A07-002. [CrossRef] [Google Scholar]
  • Kirillin G. 2010. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ Res 15: 279–293. [Google Scholar]
  • Kitaigorodskii S, Miropolski Y. 1970. On the theory of the open-ocean active layer. − Izv., Atmos Ocean Phys 6: 178–188. [Google Scholar]
  • Kling GW. 1988. Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West-Africa. Limnol Oceanogr 33: 27–40. [CrossRef] [Google Scholar]
  • Kraemer BM, Anneville O, Chandra S, et al. 2015. Morphometry and average temperature affect lake stratification responses to climate change: lake stratification responses to climate. Geophys Res Lett 42: 4981–4988, DOI:10.1002/2015GL064097. [CrossRef] [Google Scholar]
  • Lachhab M, Elkharrim K, Elabidi A, Ben akkame R, Belghyti D. 2013. Etude physico-chimique des eaux du lac Sidi Boughaba − Site Ramsar − Kénitra Maroc. ScienceLib Editions Mersenne 5: 131216. [Google Scholar]
  • Lamb HF, Eicher U, Switsur VR. 1989. An 18 000 year record of vegetation, lake-level and climate history from the Middle Atlas, Morocco. J Biogeogr 16: 65–74. [CrossRef] [Google Scholar]
  • Lapierre J-F., Seekell DA, del Giorgio PA. 2015. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon. Glob Change Biol 21: 4425–4435, https://doi.org/10.1111/gcb.13031, PMID: 26150108. [CrossRef] [Google Scholar]
  • Leavitt PR, et al. 2009. Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54: 2330–2348. [CrossRef] [Google Scholar]
  • Lecompte M. 1986. Biog6ographie de la montagne marocaine: le Moyen Atlas central. Paris: CNRS, 202 p. [Google Scholar]
  • Linstadter A, Zielhofer C. 2010. Regional fire history shows abrupt responses of Mediterranean ecosystems to centennial-scale climate change (Olea-Pistacia woodlands, NE Morocco). J Arid Environ 74: 101–110. [CrossRef] [Google Scholar]
  • Livingstone DM. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Change 57: 205–225. [CrossRef] [Google Scholar]
  • Livingstone DM. 2008. A change of climate provokes a change of paradigm: taking leave of two tacit assumptions about physical lake forcing. Int Rev Hydrobiol 93: 404–414. [CrossRef] [Google Scholar]
  • Livingstone DM, Lotter AF. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palæolimnological implications. J Paleolimnol 19: 181–198. [CrossRef] [Google Scholar]
  • MacIntyre S, Melack JM. 2010. Mixing dynamics in lakes across climatic zones. In: Likens GE, Ed. lake ecosystem ecology: a global perspective. San Diego, CA: Academic Press, 86–95. [Google Scholar]
  • MacIntyre S, Fram JP, Kushner PJ, et al. 2009. Climate-related variations in mixing dynamics in an Alaskan arctic lake. Limnol Oceanogr 54: 2401–2417. [CrossRef] [Google Scholar]
  • MacKay MD, Neale PJ, Arp CD, et al. 2009. Modeling lakes and reservoirs in the climate system. Limnol Oceanogr 54: 2315–2329, DOI:10.4319/lo.2009.54.6_part_2.2315. [CrossRef] [Google Scholar]
  • Magee MR, Wu CH. 2016. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. In review. [Google Scholar]
  • Magee MR, Wu CH, Robertson DM, Lathrop RC, Hamilton DP. 2016. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol Earth Syst Sci 20: 1681. [CrossRef] [Google Scholar]
  • Magnuson JJ, Crowder LB, Medvick PA. 1979. Temperature as an ecological resource. Am Zool 19: 331–343, https://doi.org/10.1093/icb/19.1.331. [CrossRef] [Google Scholar]
  • Magnuson JJ, Benson BJ, Kratz TK. 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin, U.S.A. Freshw Biol 23: 145–159, DOI:10.1111/j.1365-2427.1990.tb00259.x. [CrossRef] [Google Scholar]
  • Magnuson JJ, et al. 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289: 1743–1746. and Errata 2001, Science 291: 254. [Google Scholar]
  • Martin J. 1981. Le Moyen Atlas Central; étude géomorphologique. Notes et Mémoires du service Géologique 28. Ed Serv Géol Maroc Rabat. [Google Scholar]
  • Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, et al. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. In: Proceedings, National Academy of Sciences of the United States of America, 110, 6448–6452, https://doi.,org/10.1073/pnas.1216006110, PMID: 23576718. [CrossRef] [Google Scholar]
  • Mironov D. 2008. Parameterization of lakes in numerical weather prediction. Description of a lake model, Deutscher Wetterdienst. COSMO Tech Rep 11: 1–41. [Google Scholar]
  • Mironov D, Heise E, Kourzeneva E, Ritter B, Schneider N, Terzhevik A. 2010. Implementation of the lake parameterisation saheme FLake into the numerical weather prediction model COSMO. Boreal Environ Res 15: 218–230. [Google Scholar]
  • Mitchell TD, Hulme M. 2000. A country-by-country analysis of past and future warming rates. Univ. of East Anglia: Tyndall Centre Working Paper No. 1. [Google Scholar]
  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Asabe 50: 885–900. [Google Scholar]
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I-A discussion of principles. J Hydrol 10: 282–290, DOI:10.1016/0022-1694(70)90255-6. [CrossRef] [Google Scholar]
  • Nearing MA, Deer-Ascough L, Laflen JM. 1990. Sensitivity analysis of the WEPP hillslope profile erosion model. Trans ASAE 33: 839–849. [CrossRef] [Google Scholar]
  • Nõges P, Nõges T, Ghiani M, Paracchini B, Pinto Grande J, Sena F. 2011. Morphometry and trophic state modify the thermal response of lakes to meteorological forcing. Hydrobiologia 667: 241–254, DOI:10.1007/s10750-011-06917. [CrossRef] [Google Scholar]
  • North RP, Livingstone DM, Hari RE, Köster O, Niederhauser P, Kipfer R. 2013. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters 3: 341–350, DOI:10.5268/IW-3.3.560. [CrossRef] [Google Scholar]
  • O'Reilly CM, Alin SR, Plisnier P.-D, Cohen AS, McKee BA. 2003. Climate change decreases aquatic ecosystem productivity in Lake Tanganyika, Africa. Nature 424: 766–768. [CrossRef] [PubMed] [Google Scholar]
  • O'Reilly CM, Sharma S, Gray DK, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42, https://doi.org/10.1002/2015gl066235. [Google Scholar]
  • Paerl HW, Millie DF. 1996. Physiological ecology of toxic aquatic cyanobacteria. Phycologia 35: 160–167, https://doi.org/10.2216/i0031-8884-35-6S-160.1. [CrossRef] [Google Scholar]
  • Palmer ME, Yan ND, Somers KM. 2014. Climate change drives coherent trends in physics and oxygen content in North American lakes. Clim change 124: 285–299. [CrossRef] [Google Scholar]
  • Perroud M, Goyette S. 2010. Impacts of warmer climate on Lake Geneva water-temperature profiles. Boreal Environ Res 15: 255–278. [Google Scholar]
  • Pham SV, Leavitt PR, McGowan S, Peres-Nato P. 2008. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnol Oceanogr 53: 728–742. [CrossRef] [Google Scholar]
  • Ramdani M. 1981. Recherches hydrobiologiques sur la merja Sidi Bou Rhaba (littoral atlantique du Maroc): étude physico-chimique et analyse faunistique. Bulletin de l'Institut Scientifique (Rabat) 5: 37–137. [Google Scholar]
  • Ramdani M, Tourenq JN. 1982. Contribution à l'étude faunistique de la Merja de Sidi Boughaba. Bulletin de l'Institut Scientifique, (Rabat) 6: 179–223. [Google Scholar]
  • Ramdani M, Flower RJ, Elkhiati N, et al. 2001. North African wetland lakes: characterization of nine sites included in the CASSARINA Project. Aquat Ecol 35: 281–302. [CrossRef] [Google Scholar]
  • Richardson DC, Melles SJ, Pilla RM, et al. 2017. Transparency, Geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern north America (1975–2014). Water 9: 442. [CrossRef] [Google Scholar]
  • Robertson DM, Ragotzkie RA. 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat Sci 52: 360–380, DOI:10.1007/BF00879763. [CrossRef] [Google Scholar]
  • Rodionov SN. 2004. A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31: L09204, DOI:10.1029/2004GL019448. [CrossRef] [Google Scholar]
  • Rodionov SN. 2005a. A brief overview of the regime shift detection methods. In: Velikova V, Chipev N, Eds. Large-Scale Disturbances (Regime Shifts) and Recovery in Aquatic Ecosystems: Challenges for Management Toward Sustainability, 14–16 June 2005, Varna, Bulgaria: UNESCO-ROSTE/BAS Workshop on Regime Shifts, pp. 17–24. [Google Scholar]
  • Rodionov SN. 2005b. Detecting regime shifts in the mean and variance: methods and specific examples. In: Velikova V, Chipev N, Eds. Large-Scale Disturbances (Regime Shifts) and Recovery in Aquatic Ecosystems: Challenges for Management Toward Sustainability, 14–16 June 2005. Varna, Bulgaria: UNESCO-ROSTE/BAS Workshop on Regime Shifts, pp. 68–72. [Google Scholar]
  • Rosenzweig C. 2007. Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, et al., Eds. Climate change 2007–impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, pp. 79–131. [Google Scholar]
  • Rouse WR, Oswald CJ, Binyamin N, et al. 2008. The influence of lakes on the regional energy and water balance of the central Mackenzie River Basin. In: Woo MK, Eds. Atmospheric dynamics of a cold region: the Mackenzie GEWEX Study experience, Volume I. New York: Springer, pp. 309–326. [CrossRef] [Google Scholar]
  • Rueda F, Schladow G. 2009. Mixing and stratification in lakes of varying horizontal length scales: scaling arguments and energy partitioning. Limnol Oceanogr 54: 2003–2017, DOI:10.4319/lo.2009.54.6.2003. [CrossRef] [Google Scholar]
  • Samal NR, Mazumdar A. 2005. Management of lake ecosystem. J Ekologia 3: 123–130. [Google Scholar]
  • Sayad A, Chakiri S, Martin C, Bejjaji Z, Echarfaoui H. 2011. Effet des conditions climatiques sur le niveau du lac Sidi Ali (Moyen Atlas, Maroc). Physio-Géo. Géogra phys et Environ 5: 251–268. [Google Scholar]
  • Schmidt W. 1928. Über temperatur and stabilitätsverhaltnisse von seen. Geogr Ann 10: 145–177. [Google Scholar]
  • Schmid M, Hunziker S, Wüest A. 2014. Lake surface temperatures in a changing climate: a global sensitivity analysis. Clim Change 124: 301–315. [CrossRef] [Google Scholar]
  • Schneider P, Hook SJ. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett 37: 1–5. [Google Scholar]
  • Schindler DW, Bayley SE, Parker BR. 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41: 1004–1017. [CrossRef] [Google Scholar]
  • Schneider P, Hook SJ, Radocinski RG, et al. 2009. Satellite observations indicate rapid warming trend for lake in California and Nevada. Geophys Res Lett 36: 1–6, DOI:10.1029/2009GL0408461. [CrossRef] [Google Scholar]
  • Sharma S, Vander Zanden MJ, Magnuson JJ, Lyons J. 2011. Comparing climate change and species invasions as drivers of coldwater fish population extirpations. Plos One 6: DOI:10.1371/journal.pone.0022906, PMID: 21860661. [Google Scholar]
  • Smol JP. 2008. Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd Ed., Blackwell. [Google Scholar]
  • Stehr A, Debels P, Romero F, Alcayaga H. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrol Sci J 53: 588–601. [CrossRef] [Google Scholar]
  • Stepanenko VM, Martynov A, Jöhnk KD, et al. 2013. A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geosci Model Dev 6: 1337–1352. [CrossRef] [Google Scholar]
  • Straile D, Jöhnk K, Rossknecht H. 2008. Complex effects of winter warming on the physiochemical change in the world's largest freshwater lake-Lake Baikal. Siberia. Glob Change Biol 14: 1947–1958. [CrossRef] [Google Scholar]
  • Verburg P, Hecky RE, Kling H. 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507. [CrossRef] [PubMed] [Google Scholar]
  • Vincent WF. 2009. Effects of climate change on lakes. In: Likens GE, Ed. Encyclopedia of Inland Waters. New York: Academic Press, pp. 55–60. [CrossRef] [Google Scholar]
  • Voutilainen A, Huttula T, Juntunen J, Rahkola-Sorsa M, Rasmus K, Viljanen M. 2014. Diverging site-specific trends in the water temperature of a large boreal lake in winter and summer due to mixed effects of local features and climate change. Boreal Environ Res 19: 104–114. [Google Scholar]
  • Williamson CE, Dodds W, Kratz TK, Palmer M. 2008. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6: 247–254. [CrossRef] [Google Scholar]
  • Williamson CE, Saros JE, Schindler DW. 2009. Sentinels of change. Science 323: 887–889. [Google Scholar]
  • Williamson CE, Saros JE, Vincent WF, Smol JP. 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54: 2273–2282, DOI:10.4319/lo.2009.54.6_part_2.227311. [CrossRef] [Google Scholar]
  • Williamson CE, Salm C, Cooke SL, Saros JE. 2010. How do UV radiation, temperature, and zooplankton influence the dynamics of alpine phytoplankton communities? Hydrobiologia 648: 73–81, DOI:10.1007/s10750-010-0147-5. [CrossRef] [Google Scholar]
  • Winslow LA, Read JS, Hansen GJA, Hanson PC. 2015. Small lakes show muted climate change signal in deepwater temperatures. Geophys Res Lett 42: 2014GL062325, DOI:10.1002/2014GL062325. [CrossRef] [Google Scholar]
  • Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D. 2017a. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Change 142: 505–520, DOI: 10.1007/s10584-017-1966-4. [CrossRef] [Google Scholar]
  • Woolway RI, Meinson P, Nõges P, Jones ID, Laas A. 2017b. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim Change 141: 759–773. [CrossRef] [Google Scholar]
  • Woolway RI, Merchant CJ. 2017c. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep 7: 4130. [Google Scholar]
  • Zielhofer C, Fletcher WJ, Mischke S, et al. 2017. Atlantic forcing of Western Mediterranean winter rain minima during the last 12 000 years. Quaternary Sci Rev 157: 29–51. [Google Scholar]
  • Zouhri L, Gorini C, Deffontaines B, Mania J. 2004. Relationships between hydraulic conductivity distribution and synsedimentary faults, Rharb-Mamora basin, Morocco; Hydrogeological, geostatistical and modeling approaches. Hydrogeol J 12: 591–600. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.