Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 1
Number of page(s) 10
DOI https://doi.org/10.1051/limn/2017028
Published online 04 January 2018
  • Bartoszek L. 2007. Wydzielanie fosforu z osadów dennych. Zeszyty Naukowe Politechniki Rzeszowskiej 240: 5–21 (in Polish). [Google Scholar]
  • Branković S, Pavlović-Muratspahić D, Topuzović M, Glišić R, Milivojević J, Đekić V. 2012. Metals concentration and accumulation in several aquatic macrophytes. Biotechnol Biotechnol Equip 26: 2731–2736. [CrossRef] [Google Scholar]
  • Brix H. 1994. Functions of macrophytes in constructed wetlands. Water Sci Technol 29: 71–78. [Google Scholar]
  • Brix H, Dyhr‐Jensen K, Lorenzen B. 2002. Root‐zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. J Exp Bot 53: 2441–2450. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho C, Hepp LU, Dalma-Silva C, Albertoni EF. 2015. Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53: 1–9. [CrossRef] [Google Scholar]
  • Connell DW, Miller GJ. 1984. Chemistry and ecotoxicology of pollution, John Wiley & Sons: New York, NY, USA. [Google Scholar]
  • Czamara A, Czamara W. 2008. Heavy metal in the Mściwojów Reservoir ecological system. Infrastruktura i Ekologia Terenów Wiejskich 9: 283–296 (in Polish). [Google Scholar]
  • Duarte CM, Kalff J. 1988. Influence of Lake Morphometry on the response of submerged Macrophyte to sediment fertilization. Can J Fish Aquat Sci 45: 216–221. [CrossRef] [Google Scholar]
  • Du Laing G, Van Ryckegem G, Tack FM, Verloo MG. 2006. Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere 63: 1815–1823. [CrossRef] [PubMed] [Google Scholar]
  • Ganesh KS, Sundaramoorthy P, Nagarajan M. 2015. Organic soil amendments: potential source for heavy metal accumulation. World Sci News 16: 28–39. [Google Scholar]
  • Glińska-Lewczuk K. 2005. Oxbow lakes as biogeochemical filters for nutrient outflow from agricultural areas. In: Heathwaite L, Webb B, Rosenberry D, Weaver D, Hayash M, eds. Dynamics and Biogeochemistry of River Corridors and Wetlands. Proceedings of symposium S4 held during the Seventh IAHS Scientific Assembly at Foz do Iguacu, Brazil, April. IAHS Publ 294: 55–65. [Google Scholar]
  • Glińska-Lewczuk K. 2006. Effect of land use and lake presence on chemical diversity of the Łyna river system. Pol J Environ Stud 15: 259–269. [Google Scholar]
  • Huang W, Chen Q, Ren K, Chen K. 2015. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river, mouth wetlands. Environ Monit Assess 187: 97. [CrossRef] [PubMed] [Google Scholar]
  • Jackson LJ, Kalff J, Rasnnussen JB. 1993. Sediment pH and redox potential affect the bioavailability of Al, Cu, Fe, Mn, and Zn to rooted aquatic macrophytes. Can J Fish Aquat Sci 50: 143–148. [CrossRef] [Google Scholar]
  • Jensen S. 1979. Classification of lakes in southern Sweden on the basis of their macrophyte composition by means of multivariate methods. Vegetation 39: 129–146. [CrossRef] [Google Scholar]
  • Jespersen DN, Sorrell BK, Brix H. 1998. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquat Bot 61: 165–180. [CrossRef] [Google Scholar]
  • Jin L, Whitehead PG, Heppell CM, Lansdown K, Purdie DA, Trimmer M. 2016. Modelling flow and inorganic nitrogen dynamics on the Hampshire Avon: linking upstream processes to downstream water quality. Sci Total Environ 572: 1496–1506. [CrossRef] [PubMed] [Google Scholar]
  • Johnson RR, Ostrofsky ML. 2004. Effect of sediment nutrients and depth on small-scale spatial heterogeneity of submersed macrophyte communities in Lake Pleasant Pensynwalia. Can J Fish Aquat Sci 61: 1493–1502. [CrossRef] [Google Scholar]
  • Kisson LTT, Jacob DL, Hanson MA, Herwig BR, Bowe SE, Otte ML. 2013. Macrophytes in shallow lakes: relationships with water, sediment and watershed characteristics. Aquat Bot 109: 39–48. [CrossRef] [PubMed] [Google Scholar]
  • Koch EW. 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17. [CrossRef] [Google Scholar]
  • Kolada A, Ciecierska H. 2009. Wytyczne do prowadzenia badań terenowych oraz sposobu zestawiania i przetwarzania danych o makrolitach w jeziorach. Warszawa: IOŚ − UWM, 22 p (in Polish). [Google Scholar]
  • Kuriata-Potasznik A, Szymczyk S, Skwierawski A, Glińska-Lewczuk K, Cymes I. 2016. Heavy metal contamination in the surface layer of bottom sediments in a flow-through lake: a case study of lake symsar in northern poland. Water 8: 358. [CrossRef] [Google Scholar]
  • Lacoul P, Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14: 89–136. [CrossRef] [Google Scholar]
  • Lakatos G, Kiss M, Mészáros I. 1999. Heavy metal content of common reed (Phragmites australis/Cay./Trin. ex Steudel) and its periphyton in Hungarian shallow standing waters. Biology, Ecology and Management of Aquatic Plants. Netherlands: Springer, pp. 47–53. [Google Scholar]
  • Li C-H, Wang B, Ye C, Ba Y-X. 2014. The release of nitrogen and phosphorus during the decomposition process of submerged Macrophyte (Hydrilla veticillata Royle) with different biomass levels. Ecol Eng 70: 268–274. [CrossRef] [Google Scholar]
  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84. [CrossRef] [Google Scholar]
  • Meyerson LA, Cronin JT, Pyšek P. 2016. Phragmites australis as a model organism for studying plant invasions. Biol Invasions 18: 2421–2431. [CrossRef] [Google Scholar]
  • Mishra VK, Upadhayaya AR, Pandey SK, Tripathi BD. 2008. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour Technol 99: 930–936. [CrossRef] [PubMed] [Google Scholar]
  • Njuguna SM, Yan X, Gituru RW, Wang Q, Wang J. 2017. Assessment of macrophyte, heavy metal, and nutrient concentrations in the water of the Nairobi River, Kenya. Environ Monit Assess 189: 454. [CrossRef] [PubMed] [Google Scholar]
  • Obolewski K. 2002. Epiphytic organisms (periphyton) inhabiting reed Phragmites australis, broadleaf cattail Typha latifolia and artificial substrate in the Pomeranian Lubowidzkie Lake-preliminary study. Słupskie Prace Przyrodn Limnol 1: 71–82 (in Polish). [Google Scholar]
  • Obolewski K. 2005. Organizmy poroślowe (perifiton) zasiedlające wiosną trzcinęphragmites australis i pałkę Typha latifolia w jeziorze Raduńskie Dolne − badania wstępne. Słupskie Prace Biologiczne 2: 37–48 (in Polish). [Google Scholar]
  • Obolewski K, Skorbiłowicz E, Skorbiłowiz M, Glińska-Lewczuk K, Astel AM, Strzelczak A. 2011. The effect of metals accumulated in reed Phagmites australis on the structure of peryfiton. Ecotoxical Environ Saf 74: 558–568. [CrossRef] [Google Scholar]
  • Pachuta K, Oglęcki P. 2001. Wstępna inwentaryzacja flory i fauny Jeziora Imielińskiego w Warszawie w aspekcie ochrony jego walorów przyrodniczo-krajobrazowych. Zeszyty Problemowe Postepów Nauk Rolniczych 478: 495–507 (in Polish). [Google Scholar]
  • Pajević S, Kevrešan Ž, Radulović S, Radnović D, Vučković M, Matavulj M. 2003. Aquatic macrophytes − role in monitoring and remediation of nutrients and heavy metals. ISIRR. Section III. [Google Scholar]
  • Parsons CT, Rezaneshad F, O'Connell DW, van Cappellan P. 2017. Sediment phosphorus speciation and mobility under dynamic redox condition. Biogeosciences 14: 3585–3602. [CrossRef] [Google Scholar]
  • Parzych A, Cymer M, Macheta K. 2016. Leaves and roots of Typha latifolia and Iris pseudacorus as bioindicators of contamination of bottom sediments by heavy metals. Limnol Rev 16: 77–83. [CrossRef] [Google Scholar]
  • Pełchaty M, Promin E. 2015. Rola roślinności wodnej i szuwarowej w funkcjonowaniu jezior. Ocena stanu ich wód. Studia Limnologica of Telmatologica 9: 25–34 (in Polish). [Google Scholar]
  • Potasznik A, Szymczyk S, Sidoruk M, Świtajska IJ. 2014. Role of Lake Symsar in the reduction of phosphorus concentration in surface runoff from agricultural lands. J Water Land Dev 20: 39–44. [CrossRef] [Google Scholar]
  • Potasznik A, Szymczyk S. 2015. Magnesium and calcium concentrations in the surface water and bottom deposits of a river-lake system. J Elementol 20: 677–692. [Google Scholar]
  • Potasznik A, Szymczyk S. 2016. Does inflow of water river shape the nutrient content of lake sediments? J Elementol 21: 471–484. [Google Scholar]
  • Rzymski P, Niedzielski P, Klimaszyk P, Poniedziałek B. 2014. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess 186: 3199–3212. [CrossRef] [PubMed] [Google Scholar]
  • Sasmaz A, Obek E, Hasar, H. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol Eng 33: 278–284. [CrossRef] [Google Scholar]
  • Selbo SM, Snow AA. 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquat Bot 78: 361–369. [CrossRef] [Google Scholar]
  • Shafi N, Pandit AR, Kamili AN, Mushtag B. 2015. Heavy metal accumulation by azollapinnata of dal lake ecosystem, India. J Environ Prot Sustain Dev 1: 8–12. [Google Scholar]
  • Skorbiłowicz E, Skorbiłowicz M, Malinowska D. 2016. Accumulation of heavy metals in organs of aqueous plants and its association with bottom sediments in bug river (poland). J Ecol Eng 17: 295–305. [CrossRef] [Google Scholar]
  • Szafran K. 2003. Metale ciężkie w osadach dennych trzech płytkich jezior Łęczycko-Włodawskich. Acta Agrophys 1: 329–337 (in Polish). [Google Scholar]
  • Szmeja J. 2006. Przewodnik do badań roślinności wodnej, Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego, 1–407 (in Polish). [Google Scholar]
  • Tang Y, Harpenslager SF, van Kempen MM, et al. 2017. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosciences 14: 755. [CrossRef] [Google Scholar]
  • Ter Braak CJF, SmilauerP. 2002. CANOCO reference manual and canodraw for windows user's guide: software for canonical community ordination (version 4.5). Ithaca, NY, USA: Microcomputer Power, 500 p. [Google Scholar]
  • Todorovics C, Garay TM, Bratek Z. 2005. The use of the reed (Phragmites australis) in wastewater treatment on constructed wetlands. Acta Biologica Szegediensis 49: 81–83. [Google Scholar]
  • Tóth VR. 2016. Reed stands during different water level periods: physico-chemical properties of the sediments and growth of Phragmites australis of Lake Balaton. Hydrobiologia 778: 193–207. [CrossRef] [Google Scholar]
  • Wang Y, Li Z, Zhou L, Feng L, Fan N, Shen J. 2013. Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake. Hydrobiologia 700: 329–341. [CrossRef] [Google Scholar]
  • Wang Z, Yao L, Lin G, Liu W. 2014. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol Environ Saf 107: 200–206. [Google Scholar]
  • Wojewódzki Inspektorat Ochrony Środowiska. 2012. Raport o stanie środowiska województwa warmińsko-mazurskiego w 2011 roku. Biblioteka Monitoringu Środowiska, praca zbiorowa pod kierunkiem Danuty Budzyńskiej, 35 p (in Polish). [Google Scholar]
  • Yu Q, Wang HZ., Li Y, Shao JC, et al. 2015. Effects of high nitrogen concentration on the growth of submersed Macrophyte at moderate phosphorus concentrations. Water Res 83: 385–395. [CrossRef] [PubMed] [Google Scholar]
  • Zerbe J, Sobczyński T, Elbanowska H, Siepak J. 1999. Speciation of heavy metals in bottom sediments of lakes. Pol J Environ Stud 8: 331–339. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.