Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 345 - 360
DOI https://doi.org/10.1051/limn/2017018
Published online 25 September 2017
  • Adamowicz S, Hebert P Marinone MC. 2004. Species diversity and endemism in the Daphnia of Argentina: a genetic investigation. Zool J Linn Soc: Lond 140: 171–205. [CrossRef] [Google Scholar]
  • Amat F, Cohen R, Hontoria F Navarro J. 2004. Further evidence and characterization of Artemia franciscana (Kellog, 1906) populations in Argentina. J Biogeogr 31 (11): 1735–1749. [Google Scholar]
  • American Public Health Association (APHA). 1992. Standard methods for the examination of water and wastewater, 18th ed. Washington, DC. [Google Scholar]
  • Arar EJ. 1997. In vitro determination of chlorophylls a, b, c + c and pheopigments in marine and freshwater algae by visible spectrophotometry. Method 446.0. U.S. Environmental Protection Agency. [Google Scholar]
  • Ardohain D, Benítez H, Claps MC, Gabellone N. 2005. Estructura y dinámica de rotíferos planctónicos en dos lagunas pampásicas: similitudes y diferencias. Biol Acuát 22: 7–18. [Google Scholar]
  • Battauz YS, Jose de Paggi SB, Paggi JC, Romano M, Barberis I. 2013. Zooplankton characterisation of Pampean saline shallow lakes, habitat of the Andean flamingoes. J Limnol 72: 531–542. [CrossRef] [Google Scholar]
  • Bayly IAE. 1993. The fauna of athalassic saline waters in Australia and the Altiplano of South America: comparisons and historical perspectives. Hydrobiologia 267: 225–231. [Google Scholar]
  • Bos D, Cumming B, Watters C, Smol J. 1996. The relationship between zooplankton, conductivity and lake water ionic composition in 111 lakes from the Interior Plateau of British Columbia. Canada. Int J Salt Lake Res 5: 1–15. [CrossRef] [Google Scholar]
  • Boveri M, Quirós R. 2007. Cascading trophic effects in pampean shallow lakes: results of a mesocosm experiment using two coexisting fish species with different feeding strategies. Hydrobiologia 584: 215–222. [Google Scholar]
  • Boxshall G, Defaye D. 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195–207. [Google Scholar]
  • Browne R, Wanigasekera G. 2000. Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. J Exp Mar Biol Ecol 244: 29–44. [Google Scholar]
  • Cabrera A. 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de agricultura y jardinería. Buenos Aires: Ed. Acme, 85 p. [Google Scholar]
  • Casagrande G, Vergara G, Bellini Y. 2006. Cartas agroclimáticas actuales de temperaturas, heladas y lluvias de la provincia de La Pampa (Argentina). Rev Fac Agronom UNLPam 17 (1/2): 15–22. [Google Scholar]
  • Chang K, Nagata T, Hanazato T. 2004. Direct and indirect impacts of predation by fish on the zooplankton community: an experimental analysis using tanks. Limnology 5: 121–124. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ciros-Pérez J, Gómez A, Serra M. 2001. On the taxonomy of three sympatric sibling species Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n.sp. J Plankton Res 23: 1311–1328. [Google Scholar]
  • Claps M, Gabellone N, Benítez H. 2004. Zooplankton biomass in an eutrophic shallow lake (Buenos Aires, Argentina): spatio-temporal variations. Ann Limnol − Int J Limnol 40 (3): 201–210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Clegg JS, Gajardo G. 2009. Two highly diverged New World Artemia species, A. franciscana and A. persimilis, from contrasting hypersaline habitats express a conserved stress protein complement. Comp Biochem Phys 153: 451–456. [CrossRef] [Google Scholar]
  • Cohen G. 1998. Anostraca. In Coscarón S, Morrone JJ, eds. Biodiversidad de Artrópodos Argentinos. La Plata: Ediciones Sur, pp. 491–501. [Google Scholar]
  • D'Ambrosio DS, Claps MC, García A. 2016. Zooplankton diversity of a protected and vulnerable wetland system in southern South America (Llancanelo area, Argentina). Int Aquat Res 8: 65–80. [CrossRef] [Google Scholar]
  • De los Ríos P. 2005. Richness and distribution of zooplanktonic crustacean species in Chilean altiplanic and southern Patagonia ponds. Pol J Environ Stud 14: 817–822. [Google Scholar]
  • Del Ponti O, Cabrera G, Vignatti A, Echaniz S. 2015. Dynamics of the limnological parameters and zooplankton of La Brava, a shallow lake of the Atuel-Salado-Chadileuvú-Curacó rivers system (La Pampa, Argentina). Appl Ecol Environ Sci 3 (6): 193–199. [Google Scholar]
  • Derry A, Hebert P, Prepas E. 2003a. Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnol Oceanogr 48 (2): 675–685. [Google Scholar]
  • Derry A, Prepas E, Hebert P. 2003b. A comparison of zooplankton communities in saline lakewater with variable anion composition. Hydrobiologia 505: 199–215. [Google Scholar]
  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada MC, Robledo W. 2010. InfoStat (versión 2010). Córdoba: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. [Google Scholar]
  • Dodson S, Everhart W, Jandl A, Krauskopf S. 2007. Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia 579: 393–399. [Google Scholar]
  • Dokulil M. 2016. Climate impacts on ecohydrological processes in aquatic systems. Ecohydrol Hydrobiol 16: 66–70. [CrossRef] [Google Scholar]
  • Dornes P, Comas R, Cardín D, Pochetti R, Ianni J, Kruse E. 2016. Identificación y caracterización hidrológica de lagunas en el centro-este de la Provincia de La Pampa. In García R, Rocha V, Dornes P, eds. Relación Agua Subterránea-Superficial. IX Congreso Argentino de Hidrogeología − VII Seminario Hispano Latinoamericano de Hidrología Subterránea, Catamarca, pp. 213–220. [Google Scholar]
  • Drago E, Quirós R. 1996. The hydrochemistry of inland waters of Argentina; a review. Int J Salt Lake Res 4: 315–325. [CrossRef] [Google Scholar]
  • Dumont H, van de Velde I, Dumont S. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97. [CrossRef] [PubMed] [Google Scholar]
  • Echaniz S, Vignatti A. 2010. Diversity and changes in the horizontal distribution of crustaceans and rotifers in an episodic wetland of the central region of Argentina. Biota Neotrop 10 (3): 133–141. [CrossRef] [Google Scholar]
  • Echaniz S, Vignatti A. 2011. Seasonal variation and influence of turbidity and salinity on the zooplankton of a saline lake in central Argentina. Lat Am J Aquat Res 39 (2): 306–315. [CrossRef] [Google Scholar]
  • Echaniz S, Vignatti A. 2013. Trophic status of shallow lakes of La Pampa (Argentina) and its relation with the land use in the basin and nutrient internal load. J Environ Prot 4: 51–60. [CrossRef] [Google Scholar]
  • Echaniz S, Vignatti A, José de Paggi S, Paggi J, Pilati A. 2006. Zooplankton seasonal abundance of South American saline shallow lakes. Int Rev Hydrobiol 91: 8–100. [Google Scholar]
  • Echaniz S, Vignatti A, Bunino P. 2008. El zooplancton de un lago somero hipereutrófico de la región central de Argentina. Cambios después de una década. Biota Neotrop 8 (4): 63–71. [CrossRef] [Google Scholar]
  • Echaniz S, Vignatti A, Cabrera G. 2009. Características limnológicas de una laguna turbia orgánica de la provincia de La Pampa y variación estacional del zooplancton. Biol Acuát 26: 71–82. [Google Scholar]
  • Echaniz S, Vignatti A, Cabrera G, José de Paggi S. 2012. Zooplankton richness, abundance and biomass of two hypertrophic shallow lakes with different salinity. Biota Neotrop 12(2): 37–44. [CrossRef] [Google Scholar]
  • Echaniz S, Cabrera G, Vignatti A. 2015. The ecology of the saline lakes in the semiarid Pampa central (Argentina): limnological characterization and zooplankton of Utracán. Adv Life Sci 5 (3): 64–72. [Google Scholar]
  • Environmental Protection Agency (EPA). 1993. ESS Method 340.2: total suspended solids, mass balance (dried at 103–105 °C) volatile suspended solids (ignited at 550 °C), http://www.epa.gov/glnpo/lmmb/methods/methd340.pdf (accessed online: 2010/20/06). [Google Scholar]
  • Fernández Cirelli A, Miretzky P. 2004. Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quatern Int 114: 113–121. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ferrando N, Claps MC. 2016. A revised and updated checklist of Monogononta rotifers from Argentina. Check List 12 (4): 1–26. [CrossRef] [Google Scholar]
  • Fontaneto D, De Smet W, Ricci C. 2006. Rotifers in saltwaters, re-evaluation of an inconspicuos taxon. J Mar Biol Assoc UK 86: 623–656. [CrossRef] [Google Scholar]
  • Forró L, Korovchinsky N, Kotov A, Petrusek A. 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595: 177–184. [Google Scholar]
  • Green J. 1993. Zooplankton associations in East African Lakes spanning a wide salinity range. Hydrobiologia 267: 249–256. [Google Scholar]
  • Green J, Mengestou S. 1991. Specific diversity and community structure of Rotifera in a salinity series of Ethiopian inland waters. Hydrobiologia 209: 95–106. [Google Scholar]
  • Greenwald G, Hurlbert S. 1993. Microcosm analysis of salinity effects on coastal lagoons plankton assemblages. Hydrobiologia 267: 307–335. [Google Scholar]
  • Hall C, Burns C. 2003. Responses of crustacean zooplankton to seasonal and tidal salinity changes in the coastal Lake Waihola, New Zealand. New Zeal J Mar Fresh 37: 31–43. [CrossRef] [Google Scholar]
  • Hammer U. 1986. Saline lake ecosystems of the world. Dordrecht: Dr. W. Junk Publishers, 616 p. [Google Scholar]
  • Hammer Ø, Harper D, Ryan P. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 1–9. [Google Scholar]
  • Herbst D. 2001. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219. [Google Scholar]
  • Hobæk A, Manca M, Andersen T. 2002. Factors influencing species richness in lacustrine zooplankton. Acta Oecol 23: 155–163. [CrossRef] [Google Scholar]
  • Ivanova M, Kazantseva T. 2006. Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: a statistical analysis. Russ J Ecol 37 (4): 264–270. [CrossRef] [Google Scholar]
  • Jellison R, Adams H, Melack J. 2001. Reappearance of rotifers in hypersaline Mono Lake, California, during a period of rising. Lake levels and decreasing salinity. Hydrobiologia 466: 39–43. [Google Scholar]
  • José De Paggi S, Paggi J. 1998. Zooplancton de ambientes acuáticos con diferentes estados tróficos y salinidad. Neotropica 44(1): 95–106. [Google Scholar]
  • Kalff J. 2002. Limnology: inland water system. New Jersey: Prentice Hall, 592 p. [Google Scholar]
  • Kapanen G. 2008. Phosphorus fractionation in lake sediments. Eston J Ecol 57 (4): 244–245. [CrossRef] [Google Scholar]
  • Khan T, Wilson M, Khan M. 2003. Evidence for invasive carp mediated trophic cascade in shallow lakes of western Victoria, Australia. Hydrobiologia 506/509: 465–472. [Google Scholar]
  • Kotov A. 2009. A revision of Leydigia Kurz, 1875 (Anomopoda, Cladocera, Branchiopoda), and subgeneric differentiation within the genus. Zootaxa 2082: 1–84. [Google Scholar]
  • Locascio de Mitrovich C, Villagra de Gamundi A, Juárez J, Ceraolo M. 2005. Características limnológicas y zooplancton de cinco lagunas de la Puna Argentina. Ecol Bolivia 40(1): 10–24. [Google Scholar]
  • Manca M, Vijverberg J, Polishchuk L, Voronov D. 2008. Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. J Limnol 67 (1): 15–21. [CrossRef] [Google Scholar]
  • McCauley E. 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing J, Rigler F, eds. A manual on methods for the assessment of secondary productivity in freshwaters. Oxford: Blackwell Scientific Publ., pp. 228–265. [Google Scholar]
  • Menu-Marque S, Morrone J, Locascio de Mitrovich C. 2000. Distributional patterns of the south american species of Boeckella (Copepoda: Centropagidae): a track analysis. J Crustacean Biol 20(2): 262–272. [Google Scholar]
  • Mills S, Alcántara-Rodríguez A, Ciros-Pérez J, Gómez A, Hagiwara A, Hinson Galindo K, Jersabek C, Malekzadeh-Viayeh R, Leasi F, Lee J, Welch D, Papakostas S, Riss S, Segers H, Serra M, Shiel R, Smolak R, Snell T, Stelzer C, Tang C, Wallace R, Fontaneto D, Walsh E. 2016. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796(1): 39–58. [Google Scholar]
  • Modenutti B. 1998. Planktonic rotifers of Samborombón River Basin (Argentina). Hydrobiologia 387/388: 259–265. [Google Scholar]
  • Modenutti B, Balseiro E, Diéguez M, Queimaliños C, Albariño R. 1998. Heterogeneity of fresh-water Patagonia ecosystems. Ecol Aust 8: 155–165. [Google Scholar]
  • Muñoz J, Amat F, Green A, Figuerola J, Gómez A. 2013. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 1: e 200. [Google Scholar]
  • Muylaert K, Declerck S, Van Wichelen J, De Meester L, Vyverman W. 2006. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica 36: 69–78. [Google Scholar]
  • Nielsen DL, Brock MA, Rees GN, Baldwin DS. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51: 655–665. [CrossRef] [Google Scholar]
  • Paggi JC. 1987. Limnological studies in Potter Peninsula, 25 de Mayo Island, South Shetland Islands: Biomass and spatial distribution of zooplankton. BIOMASS Scient Ser 7: 175–191. [EDP Sciences] [Google Scholar]
  • Paggi JC. 1997. Moina macrocopa (Straus, 1820) (Branchiopoda, Anomopoda) in South America: Another case of species introduction? Crustaceana 70 (8): 886–892. [Google Scholar]
  • Paggi JC. 1998. Cladocera (Anomopoda y Ctenopoda). In Coscarón S, Morrone JJ, eds. Biodiversidad de Artrópodos Argentinos. La Plata: Ediciones Sur, pp. 507–518. [Google Scholar]
  • Pejler B. 1995. Relation to habitat in rotifers. Hydrobiologia 313/314: 267–278. [Google Scholar]
  • Pérez C. 2004. Técnicas de análisis multivariante de datos. Madrid: Pearson Educación, 672 p. [Google Scholar]
  • Quirós R, Rennella A, Boveri M, Rosso J, Sosnovsky A. 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecol Aust 12: 175–185. [Google Scholar]
  • Reissig M, Trochine C, Queimaliños C, Balseiro E, Modenutti B. 2006. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol Conserv 132: 437–447. [Google Scholar]
  • Ringuelet R, Moreno I, Feldman E. 1967. El zooplancton de las lagunas de la Pampa Deprimida y otras aguas superficiales de la llanura bonaerense (Argentina). Physis 27: 187–200. [Google Scholar]
  • Rocha-Olivares A, Fleeger W, Foltz D. 2001. Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18(6): 1088–1102. [CrossRef] [PubMed] [Google Scholar]
  • Ruttner-Kolisko A. 1977. Suggestions for biomass calculation of plankton rotifers. Arch Hydrobiol 8: 71–76. [Google Scholar]
  • Sarma S, Nandini S, Morales-Ventura J, Delgado-Martínez I, González-Valverde L. 2006. Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquat Ecol 40: 349–360. [Google Scholar]
  • Scheffer M. 1998. Ecology of shallow lakes. London: Chapman & Hall, 358 p. [Google Scholar]
  • Segers H, De Smet W. 2008. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodivers Conserv 17: 303–316. [Google Scholar]
  • Sokal R, Rohlf F. 1995. Biometría. Principios y métodos estadísticos en la investigación biológica. Barcelona: Ed. Blume, 832 p. [Google Scholar]
  • Sosnovsky A, Quirós R. 2006. El estado trófico de pequeñas lagunas pampeanas, su relación con la hidrología y el uso de la tierra. Ecol Aust 16: 115–124. [Google Scholar]
  • Tátrai I, Kálmán M, Korponai J, Paulovits G, Pomogyi P, Héri J. 2003. Regulation of plankton by omnivore cyprinids in a shallow lake in the Kis-Balaton Reservoir System. Hydrobiologia 504: 241–250. [Google Scholar]
  • Vignatti A, Echaniz S. 1999. Presencia de Daphnia (Ctenodaphnia) menucoensis Paggi, 1996 en la provincia de La Pampa (Argentina). Rev Fac Agr UNLPam 10: 21–27. [Google Scholar]
  • Vignatti A, Echaniz S. 2008. El zooplancton del embalse Casa de Piedra (La Pampa, Argentina), distribución horizontal de abundancia y biomasa. BioScriba 1 (2): 46–59. [Google Scholar]
  • Vignatti A, Echaniz S, Martín M. 2007. El zooplancton de lagos someros de diferente salinidad y estado trófico en la región semiárida pampeana (La Pampa, Argentina). Gayana 71 (1): 38–48. [Google Scholar]
  • Vignatti A, Paggi JC, Cabrera G, Echaniz S. 2012. Zooplankton diversity and its relationship with environmental changes after the filling of a temporary saline lake in the semi-arid region of La Pampa (Argentina). Lat Am J Aquat Res 40 (4): 1005–1016. [CrossRef] [Google Scholar]
  • Vignatti A, Cabrera G, Echaniz S. 2013. Distribution and biological aspects of the introduced species Moina macrocopa (Straus, 1820) (Crustacea, Cladocera) in the semi-arid central region of Argentina. Biota Neotrop 13 (3): 86–92. [CrossRef] [Google Scholar]
  • Vignatti A, Cabrera G, Pilati A, Echaniz S. 2014. Biology of Artemia persimilis Piccinelli and Prosdocimi, 1968 (Crustacea Anostraca) at the highest salinities reported for the species under natural conditions. Int J Artemia Biol 4 (1): 38–43. [Google Scholar]
  • Vignatti A, Cabrera G, Echaniz S. 2016. Biology of Boeckella poopoensis Marsh, 1906 (Copepoda, Calanoida) in natural conditions in temporary saline lakes of the central Argentina. Biota Neotrop 16(2): e20150063. [CrossRef] [Google Scholar]
  • Vikas P, Sageshkumar N, Thomas P, Chakraborty K, Vijayan K. 2012. Aquaculture related invasion of the exotic Artemia franciscana and displacement of the autochthonous Artemia populations from the hypersaline habitats of India. Hydrobiologia 684: 129–142. [Google Scholar]
  • Williams WD. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201. [Google Scholar]
  • Zalizniak L, Kefford BJ, Nuggeggoda D. 2006. Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Mar Freshw Res 57: 75–82. [Google Scholar]
  • Zar JH. 1996. Biostatistical analysis. New Jersey: Prentice Hall, 663 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.