Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 89 - 100
Published online 25 January 2017
  • Ame M.V. and Wunderlin D.A., 2005. Effects of iron, ammonium and temperature on microcystin content by a natural concentrated Microcystis aeruginosa population. Water Air Soil Pollut., 168, 235–248. [CrossRef] [Google Scholar]
  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater (21st edn,), American Public Health Association, American Water Works Foundation, Water Environment Federation, Washington, DC, 2671 p. [Google Scholar]
  • Barco M., Lawton L.A., Rivera J. and Caixach J., 2005. Optimization of intracellular microcystin extraction for their subsequent analysis by high-performance liquid chromatography. J. Chromatogr. A, 1074, 23–30. [CrossRef] [PubMed] [Google Scholar]
  • Blaha L., Babica P. and Marsalek B., 2009. Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdiscip. Toxicol., 2, 36–41. [CrossRef] [PubMed] [Google Scholar]
  • Chorus I. and Bartram J., 1999. Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management, Published on behalf of WHO, Spon Press, London, 416 p. [Google Scholar]
  • Dao T.S., Cronberg G., Nimptsch J., Do-Hong L.C. and Wiegand C., 2010. Toxic cyanobacteria from Tri An reservoir, Vietnam. Nova Hedwigia, 90, 433–448. [CrossRef] [Google Scholar]
  • Dao T.S., Nimptsch J. and Wiegand C., 2016. Dynamics of cyanobacteria and cyanobacterial toxins and their correlation with environmental parameters in Tri An reservoir, Vietnam. J. Water Health, 14, 699–712. [CrossRef] [PubMed] [Google Scholar]
  • Davis T.W., Berry D.L., Boyer G.L. and Gobler C.J., 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725. [CrossRef] [Google Scholar]
  • Dolman A.M., Rücker J., Pick F.R., Fastner J., Rohrlack T., Mischke U. and Wiedner C., 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE, 7, e38757. [Google Scholar]
  • Duong T.T., Le T.P., Dao T.S., Pflugmacher S., Rochelle-Newall E., Hoang T.K., Vu T.N., Ho C.T. and Dang D.K., 2013. Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam. J. Appl. Phycol., 25, 1065–1075. [CrossRef] [Google Scholar]
  • Dyhrman S.T., 2008. Molecular approaches to diagnosing nutritional physiology in harmful algae: implications for studying the effects of eutrophication. Harmful Algae, 8, 167–174. [CrossRef] [Google Scholar]
  • El-Shehawy R., Gorokhova E., Fernandez-Pinas F. and del Campo F.F., 2012. Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Res., 46, 1420–1429. [CrossRef] [PubMed] [Google Scholar]
  • Figueredo C.C. and Giani A., 2009. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica, 39, 264–272. [CrossRef] [Google Scholar]
  • Findlay D.L., Hecky R.E., Hendzel L.L., Stainton M.P. and Regehr G.W., 1994. Relationship between N2-fixation and heterocyst abundance and its relevance to the nitrogen budget of lake 227. Can. J. Fish Aquat. Sci., 51, 2254–2266. [CrossRef] [Google Scholar]
  • Harada K., Ogawa K., Kimura Y., Murata H., Suzuki M., Thorn P.M., Evans W.R. and Carmichael W.W., 1991. Microcystins from Anabaena flos-aquae NRC 525–17. Chem. Res. Toxicol., 4, 535–540. [CrossRef] [PubMed] [Google Scholar]
  • Havens K.E., James R.T., East T.L. and Smith V.H., 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Pollut., 122, 379–390. [CrossRef] [PubMed] [Google Scholar]
  • He X., Liu Y.L., Conklin A., Westrick J., Weavers L.K., Dionysiou D.D., Lenhart J.J., Mouser P.J., Szlag D. and Walker H.W., 2016. Toxic cyanobacteria and drinking water: impacts, detection, and treatment. Harmful Algae, 54, 174–193. [CrossRef] [PubMed] [Google Scholar]
  • Hecky R.E., Campbell P. and Hendzel L.L., 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr., 38, 709–724. [CrossRef] [Google Scholar]
  • Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U. and Zohary T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403–424. [Google Scholar]
  • Hoeger S.J., Shaw G., Hitzfeld B.C. and Dietrich D.R., 2004. Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon, 43, 639–649. [CrossRef] [PubMed] [Google Scholar]
  • Hoeting J.A., Madigan D., Raftery A.E. and Volinsky C.T., 1999. Bayesian model averaging: a tutorial. Stat. Sci., 14, 382–401. [CrossRef] [Google Scholar]
  • Horst G.P., Sarnelle O., White J.D., Hamilton S.K., Kaul R.B. and Bressie J.D., 2014. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res., 54, 188–198. [CrossRef] [PubMed] [Google Scholar]
  • Hummert C., Dahlmann J., Reinhardt K., Dang H.P.H., Dang D.K. and Luckas B., 2001. Liquid chromatography–mass spectrometry identification of microcystins in Microcystis aeruginosa strains from Lake Thanh Cong, Hanoi, Vietnam. Chromatographia, 54, 569–575. [CrossRef] [Google Scholar]
  • Jacoby J.M., Collier D.C., Welch E.B., Hardy F.J. and Crayton M., 2000. Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Can. J. Fish Aquat. Sci., 57, 231–240. [CrossRef] [Google Scholar]
  • Joung S.H., Oh H.M., Ko S.R. and Ahn C.Y., 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 10, 188–193. [CrossRef] [Google Scholar]
  • Kim B.H., Hwang S.J., Park M.H. and Kim Y.J., 2010. Relationship between cyanobacterial biomass and total Microcystin-LR levels in drinking and recreational water. Bull. Environ. Contam. Toxicol., 85, 457–462. [CrossRef] [PubMed] [Google Scholar]
  • Komárek J. and Anagnostidis K., 1989. Modern approach to the classification system of Cyanophytes. 4 – Nostocales. Arch. Hydrobiol. Suppl., 82, 247–345. [Google Scholar]
  • Komárek J. and Anagnostidis K., 1999. Cyanoprokaryota 1, Teil, Chroococcales, 548 p. [Google Scholar]
  • Komárek J. and Anagnostidis K., 2005. Cyanoprokaryota 1, Teil, Oscillatoriales, 759 p. [Google Scholar]
  • Krienitz L., Ballot A., Wiegand C., Kotut K., Codd G., and Pflugmacher S., 2002. Cyanotoxin-producing bloom of Anabaena flos-aquae, Anabaena discoidea and Microcystis aeruginosa (Cyanobacteria) in Nyanza Gulf of Lake Victoria, Kenya. J. Appl. Botany, 76, 179–183. [Google Scholar]
  • Lee T.A., Rollwagen-Bollens G., Bollens S.M. and Faber-Hammond J.J., 2015. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicol. Environ. Saf., 114, 318–325. [CrossRef] [PubMed] [Google Scholar]
  • Li D., Kong F., Shi X., Ye L., Yu Y. and Yang Z., 2012. Quantification of microcystin-producing and non-microcystin producing Microcystis populations during the 2009 and 2010 blooms in Lake Taihu using quantitative real-time PCR. J. Environ. Sci., 24, 284–290. [CrossRef] [Google Scholar]
  • Lira G.A.S.T., Bittencourt-Oliveira M.C. and Moura A.N., 2009. Structure and dynamics of phytoplankton community in the Botafogo reservoir-Pernambuco-Brazil. Braz. Arch. Biol. Techn., 52, 493–501. [CrossRef] [Google Scholar]
  • Liu X., Lu X. and Chen Y., 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae, 10, 337–343. [CrossRef] [Google Scholar]
  • Lukac M. and Aegerter R., 1993. Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon, 31, 293–305. [CrossRef] [PubMed] [Google Scholar]
  • Luo W., Chen H., Lei A., Lu J. and Hu Z., 2014. Estimating cyanobacteria community dynamics and its relationship with environmental factors. Int. J. Environ. Res. Publ. Health, 11, 1141–1160. [CrossRef] [Google Scholar]
  • MacKintosh C., Beattie K.A., Klumpp S., Cohen P. and Codd G.A., 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett., 264, 187–192. [CrossRef] [PubMed] [Google Scholar]
  • Marinho M.M. and de Moraes Huszar V.L., 2002. Nutrient availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical reservoir (Southeastern Brazil). Arch. Hydrobiol., 153, 443–468. [CrossRef] [Google Scholar]
  • Martins J.C. and Vasconcelos V.M., 2009. Microcystin dynamics in aquatic organisms. J. Toxicol. Environ. Health B Crit. Rev., 12, 65–82. [CrossRef] [PubMed] [Google Scholar]
  • McEachern P., Prepas E.E. and Planas D., 2002. Phytoplankton in boreal SubArctic lakes following enhanced phosphorus loading from forest fire: impacts on species richness, nitrogen and light limitation. Lake Reservoir Manag., 18, 138–148. [CrossRef] [Google Scholar]
  • Monchamp M.-E., Pick F.R., Beisner B.E. and Maranger R., 2014. Nitrogen forms influence Microcystin concentration and composition via changes in cyanobacterial community structure. PLoS ONE, 9, e85573. [CrossRef] [PubMed] [Google Scholar]
  • Mowe M.A.D., Mitrovic S.M., Lim R.P., Furey A. and Yeo D.C.J. 2015. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J. Limnol., 74, 205–224. [Google Scholar]
  • Muhid P., Davis T.W., Bunn S.E. and Burford M.A., 2013. Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition. Water Res., 47, 384–394. [CrossRef] [PubMed] [Google Scholar]
  • Namikoshi M., Yuan M., Sivonen K., Carmichael W.W., Rinehart K.L., Rouhiainen L., Sun F., Brittain S. and Otsuki A., 1998. Seven new microcystins possessing two L-glutamic ccid units, isolated from Anabaena sp. strain 186. Chem. Res. Toxicol., 11, 143–149. [CrossRef] [PubMed] [Google Scholar]
  • Ngoc T.A., Hiramatsu K. and Harada M., 2014. Optimizing the rule curves of multi-use reservoir operation using a genetic algorithm with a penalty strategy. Paddy Water Environ., 12, 125–137. [CrossRef] [Google Scholar]
  • Nguyen T.T.L., Cronberg G., Annadotter H. and Larsen J., 2007a. Planktic cyanobacteria from freshwater localities in Thuathien-Hue province, Vietnam II. Algal biomass and microcystin production. Nova Hedwigia, 85, 35–49. [CrossRef] [Google Scholar]
  • Nguyen T.V.H., Takizawa S., Nguyen V.M.H. and Phan T.D.P., 2007b. Natural and anthropogenic factors affecting seasonal variation of water quality in Dau Tieng Reservoir, Vietnam. Environ. Sci. Pollut., 44, 23–29. [Google Scholar]
  • Okello W., Ostermaier V., Portmann C., Gademann K. and Kurmayer R., 2010a. Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Res., 44, 2803–2814. [CrossRef] [PubMed] [Google Scholar]
  • Okello W., Portmann C., Erhard M., Gademann K. and Kurmayer R., 2010b. Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. Environ. Toxicol., 25, 367–380. [Google Scholar]
  • Oliveria D.E.D., Ferragut C. and De D.B.C., 2010. Relationships between environmental factors, periphyton biomass and nutrient content in Garças Reservoir, a hypereutrophic tropical reservoir in southeastern Brazil. Lakes Reserv. Res. Manag., 15, 129–137. [CrossRef] [Google Scholar]
  • Olrik K., Blomqvist P., Brettum P., Cronberg G. and Eloranta P., 1998. Methods for quantitative assessment of phytoplankton in freshwaters, part 1. Swedish Environmental Protection Agency, Report 4860, 86 p. [Google Scholar]
  • Paerl H.W. and Paul V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res., 46, 1349–1363. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H.W., Fulton R.S., Moisander P.H. and Dyble J., 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci.World J., 1, 76–113. [CrossRef] [Google Scholar]
  • Park H.-D., Iwami C., Watanabe M.F., Harada K.-I., Okino T. and Hayashi H., 1998. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual., 13, 61–72. [CrossRef] [Google Scholar]
  • Pham T.L., Dao T.S., Shimizu K., Lan-Chi D.H. and Utsumi M., 2015. Isolation and characterization of microcystin-producing cyanobacteria from Dau Tieng Reservoir, Vietnam. Nova Hedwigia, 101, 3–20. [CrossRef] [Google Scholar]
  • Puddick J., Prinsep M., Wood S., Kaufononga S., Cary S. and Hamilton D., 2014. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar. Drugs, 12, 5372–5395. [CrossRef] [PubMed] [Google Scholar]
  • Rantala A., Rajaniemi-Wacklin P., Lyra C., Lepisto L., Rintala J., Mankiewicz-Boczek J. and Sivonen K., 2006. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol., 72, 6101–6110. [CrossRef] [PubMed] [Google Scholar]
  • Rapala J., Sivonen K., Luukkainen R. and Niemelä S.I., 1993. Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains – a laboratory study. J. Appl. Phycol., 5, 581–591. [CrossRef] [Google Scholar]
  • Rapala J., Sivonen K., Lyra C. and Niemelä S.I., 1997. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environ. Microbiol., 63, 2206–2212. [PubMed] [Google Scholar]
  • Reynolds C.S., Oliver R.L. and Walsby A.E., 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zeal. J. Mar. Freshw. Res., 21, 379–390. [CrossRef] [Google Scholar]
  • Reynolds C.S.R., 2006. Ecology of Phytoplankton, Cambridge University Press, Cambridge. [Google Scholar]
  • Rinta-Kanto J.M., Konopko E.A., DeBruyn J.M., Bourbonniere R.A., Boyer G.L. and Wilhelm S.W., 2009. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8, 665–673. [CrossRef] [Google Scholar]
  • Sinang S.C., Reichwaldt E.S. and Ghadouani A., 2013. Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins. Environ. Monit. Assess., 185, 6379–6395. [CrossRef] [PubMed] [Google Scholar]
  • Sitoki L., Kurmayer R. and Rott E., 2012. Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia, 691, 109–122. [CrossRef] [PubMed] [Google Scholar]
  • Sivonen K., 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotocin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol., 56, 2658–2666. [PubMed] [Google Scholar]
  • Sivonen K., Namikoshi M., Evans W.R., Carmichael W.W., Sun F., Rouhiainen L., Luukkainen R. and Rinehart K.L., 1992. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl. Environ. Microbiol., 58, 2495–2500. [PubMed] [Google Scholar]
  • Sotero-Santos R.B., Carvalho E.G., Dellamano-Oliveira M.J. and Rocha O., 2008. Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae, 7, 590–598. [CrossRef] [Google Scholar]
  • Sournia A., 1978. Phytoplankton Manual, UNESCO, UK, 77 p. [Google Scholar]
  • Srivastava A., Choi G.G., Ahn C.Y., Oh H.M., Ravi A.K. and Asthana R.K., 2012. Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using real-time PCR. Water Res., 46, 817–827. [CrossRef] [PubMed] [Google Scholar]
  • Su X., Xue Q., Steinman A.D., Zhao Y. and Xie L., 2015. Spatiotemporal dynamics of microcystin variants and relationships with environmental parameters in Lake Taihu, China. Toxins, 7, 3224–3244. [CrossRef] [PubMed] [Google Scholar]
  • Te S.H. and Gin K.Y.H., 2011. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae, 10, 319–329. [CrossRef] [Google Scholar]
  • Tomioka N., Imai A. and Komatsu K., 2011. Effect of light availability on Microcystis aeruginosa blooms in shallow hypereutrophic Lake Kasumigaura. J. Plankton Res., 33, 1263–1273. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommnung der quantitative phytoplankton methodik. Mitt. Int. Verein. Theor. Angew. Limnol., 5, 567–596. [Google Scholar]
  • Visser P.M., Verspagen J.M.H., Sandrini G., Stal L.J., Matthijs H.C.P., Davis T.W., Paerl H.W. and Huisman J., 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 54, 145–159. [Google Scholar]
  • Wang D., Zhang W. and Bakhai A., 2004. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Stat. Med., 23, 3451–3467. [CrossRef] [PubMed] [Google Scholar]
  • Wetzel R. and Likens G., 2000. Composition and Biomass of Phytoplankton, Limnological Analyses, Springer, New York, 147–174. [CrossRef] [Google Scholar]
  • WHO, 1998. Cyanobacterial toxins: microcystin-LR. In: Guidelines for Drinking water Quality (ed.), Addendum to Vol. 2: Health Criteria and other Supporting Information, World Health Organization, Geneva, p. 127. [Google Scholar]
  • WHO, 2003. Algal and cyanobacteria in coastal and estuarine waters. In: Guidelines for safe Recreational Water Environments, Vol 1: Coastal and Fresh Waters, World Health Organization, Geneva, p. 253. [Google Scholar]
  • Wilhelm S.W., Farnsley S.E., LeCleir G.R., Layton A.C., Satchwell M.F., DeBruyn J.M., Boyer G.L., Zhu G. and Paerl H.W., 2011. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae, 10, 207–215. [CrossRef] [Google Scholar]
  • Wu S.K., Xie P., Liang G.D., Wang S.B. and Liang X.M., 2006. Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China. Freshw. Biol., 51, 2309–2319. [CrossRef] [Google Scholar]
  • Ye W., Liu X., Tan J., Li D. and Yang H., 2009. Diversity and dynamics of microcystin-producing cyanobacteria in China's third largest lake, Lake Taihu. Harmful Algae, 8, 637–644. [CrossRef] [Google Scholar]
  • Yu L., Kong F., Zhang M., Yang Z., Shi X. and Du M., 2014. The dynamics of Microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu, China. Toxins, 6, 3238–3257. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X.W., Fu J., Song S., Zhang P., Yang X.H., Zhang L.R., Luo Y., Liu C.H. and Zhu H.L., 2014. Interspecific competition between Microcystis aeruginosa and Anabaena flos-aquae from Taihu Lake, China. Z. Naturforsch. C, 69, 53–60. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.