Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 101 - 110
Published online 25 January 2017
  • Ask J., Karlsson J., Persson L., Ask P., Byström P. and Jansson M., 2009. Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnol. Oceanogr., 54, 2034–2040. [CrossRef] [Google Scholar]
  • Ask J., Karlsson J. and Jansson M., 2012. Net ecosystem production in clear-water and brown-water lakes, Global Biogeochem. Cycles, 26, GB1017. [Google Scholar]
  • Balicki H., 1981. Hydrology outline of Gardno Lake. Wiadomosci. IMGW, 28, 91–98 (in Polish). [Google Scholar]
  • Bengtsson L. and Hellstrom T., 1992. Wind-induced resuspension in a small shallow lake. Hydrobiologia, 241, 163–172. [CrossRef] [Google Scholar]
  • Bernatowicz S., 1969. Macrophytes in Lake Warniak and their chemical composition. Pol. J. Ecol., 17, 447–467. [Google Scholar]
  • Cieśliński R., 2013. Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin). Oceanologia, 55, 639–661. [CrossRef] [Google Scholar]
  • Cole J.J., Caraco N.F., Kling G.W. and Kratz T.K., 1994. Carbon Dioxide Supersaturation in the Surface waters of Lakes. Science, 265, 1568–1570. [CrossRef] [PubMed] [Google Scholar]
  • Cole J.J., Prairie Y.T., Caraco N.F., McDowell W.H., Tranvik L.J., Striegel R.G., Duarte C.M., Kortelainen P., Downing J.A., Middelburg J.J. and Melack J., 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171–184. [Google Scholar]
  • del Giorgio P.A. and Peters R.H., 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol. Oceanogr., 39, 772–787. [CrossRef] [Google Scholar]
  • den Heyer C. and Kalff J., 1998. Organic matter mineralization rates in sediments: a within- and among-lake study. Limnol. Oceanogr., 43, 695–705. [Google Scholar]
  • Duarte C.M. and Agusti S., 1998. The CO2 balance of unproductive ecosystems. Science, 285, 234–236. [CrossRef] [Google Scholar]
  • Dubois K., Carignan R. and Veizer J., 2009. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes? Appl. Geochem., 24, 988–998. [CrossRef] [Google Scholar]
  • Ficek D. and Wielgat-Rychert M., 2009. Spatial distribution and seasonal variation in chlorophyll concentrations in the coastal Lake Gardno (Poland). Oceanol. Hydrobiol. Stud., 38, 3–15. DOI 10.2478/v10009-009-0002-z [CrossRef] [Google Scholar]
  • Garbacik-Wesołowska A., 1973. The macrophyte biomass in the Szczecin Lagoon. Symp. Naukowe w Świnoujściu, Wydawnictwo MIR, Gdynia, 81–86 (in Polish). [Google Scholar]
  • Gessner M.O., Schieferstein B., Muller U., Barkmann S. and Lenfers U.A., 1996. A partial budget of primary organic carbon flows in the littoral zone of a hardwater lake. Aquat. Bot., 55, 93–105. [CrossRef] [Google Scholar]
  • Giziński A., Kentzer A. and Rejewski M., 1997. Why does Druzno Lake (Poland) still exist? On the conditions of the pond-type lake ecosystem sustainability. Hydrobiologia, 342/343, 297–304. [CrossRef] [Google Scholar]
  • Gliwicz Z.M., Kowalczewski A., Ozimek T., Pieczyńska E., Prejs A., Prejs K. and Rybak J.I., 1980. An Assessment of the State of Eutrophication of the Great Mazurian Lakes, Wydawnicto Akcydensowe, Warsaw, 103 p. (in Polish). [Google Scholar]
  • Gorzeń A. and Załupka A., 2009–2010. Water quality of the Słupia River at Charnowo, Łupawa et Smołdzino, Łeba at Cecynowo in 2008–2009. WIOS Reports, Słupsk (in Polish). [Google Scholar]
  • Güde H., Teiber P., Rolinski S. and Sala M., 2004. Comparison of production and degradation of organic matter at a littoral site of the prealpine Lake Constance. Limnologica, 34, 117–123. [CrossRef] [Google Scholar]
  • Jarosiewicz A., 2009. Seasonal changes of nutrient concentration in two shallow estuarine Lakes Gardno and Łebsko: comparison. Baltic Coast. Zone, 13, 121–133. Available online at: [Google Scholar]
  • Jędrasik J. and Cyberski J., 2000. The water exchange in estuarine lakes of the southern Baltic Sea as on the Gardno Lake example. Oceanol. Stud., 29, 43–66. [Google Scholar]
  • Jeffrey S.W. and Humphrey G.F., 1975. New spectrophotometric equation for determining chlorophyll a, b, c1 and c2. Biochem. Physiol. Pfl., 167, 194–204. [Google Scholar]
  • Jeppesen E., Søndergaard M., Kanstrup E., Petersen B., Eriksen R.B., Hammershøj M., Mortensen E., Jensen J.P. and Have A., 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater differ? Hydrobiologia, 275/276, 15–30. [CrossRef] [Google Scholar]
  • Kirk J.T.O., 1994. Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge, 490 p. [Google Scholar]
  • Kortelainen P., Pajunen H., Rantakari M. and Saarnisto M., 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Glob. Change Biol., 10, 1648–1653. [CrossRef] [Google Scholar]
  • Kortelainen P., Rantakari M., Huttunen J.T., Mattsson T., Alm J., Juutinen S., Larmola T., Silvola J. and Martikainen P.J., 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob. Change Biol., 12, 1554–1567. [CrossRef] [Google Scholar]
  • Kraska M., 2003. The flora. In: Mudryk Z. (ed.), Lake Gardno, Pomeranian Pedagogical Academy in Słupsk, Słupsk, 93–98 (in Polish). [Google Scholar]
  • Laws E.A., 1991. Photosynthetic quotients, new production, net community production in the open ocean. Deep-Sea Res., 38, 143–167. [CrossRef] [Google Scholar]
  • Meyercordt J., Gerbersdorf S. and Meyer-Reil L.-A., 1999. Significance of pelagic and benthic primary production in two shallow coastal lagoons of different degrees of eutrophication in the southern Baltic Sea. Aquat. Microb. Ecol., 20, 273–284. [CrossRef] [Google Scholar]
  • Muylaert K., Declerck S., Van Wichelen J., De Meester L. and Vyverman W., 2006. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica, 36, 69–78. [Google Scholar]
  • Pace M.L. and Prairie Y.T., 2005. Respiration in lakes. In: del Giorgio P.A. and Williams PJ.leB. (eds.), Respiration in Aquatic Systems, Oxford University Press, Oxford, 103–119. [CrossRef] [Google Scholar]
  • Pliński M., Kreńska B. and Wnorowski T., 1978. Floristic relations and biomass of vascular plants in the Vistula Lagoon. Stud. Mater. Oceanol., 21, 161–196 (in Polish). [Google Scholar]
  • Reitner B., Herzig A. and Herndl G.J., 1999. Dynamics in bacterioplankton production in a shallow, temperate lake (Lake Neusiedl, Austria): evidence for dependence on macrophyte production rather than phytoplankton. Aquat. Microb. Ecol., 19, 245–254. [CrossRef] [Google Scholar]
  • Ringer Z., 1959. Experiments aiming to classify the littoral flora biomass in the Vistula Firth on the basis of investigations carried on in 1955. Prace MIR, 10/A, 193–214 (in Polish). [Google Scholar]
  • Roberts B.J. and Howarth R.W., 2006. Nutrient and light availability regulate the relative contribution of autotrophs and heterotrophs to respiration in freshwater pelagic ecosystems. Limnol. Oceanogr., 51, 288–298. [CrossRef] [Google Scholar]
  • Rychert K., Wielgat-Rychert M., Szczurowska D., Myszka M., Bochyńska M. and Krawiec K., 2012. The importance of Ciliates as a trophic link in Shallow, Brackish, and Eutrophic Lakes. Pol. J. Ecol., 60, 767–776. [Google Scholar]
  • Scheffer M., 2004. Ecology of Shallow Lakes, Kluwer Academic Publishers, Dordrecht, Boston, London, 357 p. [Google Scholar]
  • Staehr P.W., Sand-Jensen K., Raun A.L., Nilsson B. and Kidmose J., 2010. Drivers of metabolism and net heterotrophy in contrasting lakes. Limnol. Oceanogr., 55, 817–830. [CrossRef] [Google Scholar]
  • Trojanowski J., 2003a. Location and general characteristic of lake. In: Mudryk Z. (ed.) Lake Gardno, Pomeranian Pedagogical Academy in Słupsk, Słupsk, 9–12 (in Polish). [Google Scholar]
  • Trojanowski J., 2003b. Hydrochemical characteristics. In: Mudryk Z. (ed.) Lake Gardno, Pomeranian Pedagogical Academy in Słupsk, Słupsk, 53–63 (in Polish). [Google Scholar]
  • Vadeboncoeur Y., Jeppesen E., Vander Zanden M.J., Schierup H.-H., Christoffersen K. and Lodge D.M., 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr., 48, 1408–1418. [Google Scholar]
  • Van de Bogert M.C., Carpenter S.R., Cole J.J. and Pace M.L., 2007. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods, 5, 145–155. [CrossRef] [Google Scholar]
  • Walter Anthony K.M., Vas D.A., Brosius L., Chapin F.S. III, Zimov S.A. and Zhuang Q., 2010. Estimating methane emissions from northern lakes using icebubble surveys. Limnol. Oceanogr. Methods, 8, 592–609. [CrossRef] [Google Scholar]
  • Wetzel R.G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229, 181–198. [CrossRef] [Google Scholar]
  • Wetzel R.G., 2001. Limnology: Lake and River Ecosystems, Academic Press, London, 1006 p. [Google Scholar]
  • Wetzel R.G. and Likens G.E., 1991. Limnological Analyses, Springer-Verlag, New York, 391 p. [Google Scholar]
  • Wielgat-Rychert M., Rychert K. and Ficek D., 2010. Factors controlling pelagic production and respiration in a shallow polymictic lake. Pol. J. Ecol., 58, 379–385. [Google Scholar]
  • Wielgat-Rychert M., Jarosiewicz A., Ficek D., Pawlik M., Rychert K., 2015. Nutrient fluxes and their impact on the phytoplankton in a shallow coastal lake. Pol. J. Environ. Stud., 24, 751–759. [CrossRef] [Google Scholar]
  • Williams P.J.leB. and Robertson J.E., 1991. Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankton Res. 13 (Suppl.), 153–169. [Google Scholar]
  • Wolnomiejski N. and Witek Z., 2013. The Szczecin Lagoon Ecosystem: The Biotic Community of the Great Lagoon and its Food Web Model, Versita, London, 293 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.