Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 315 - 323
Published online 04 September 2017
  • Aroviita J, Hämäläinen H. 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613: 45–56. [Google Scholar]
  • Balogh C, Muskó IB, László G, Nagy L. 2008. Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003–2005 at different water levels. Hydrobiologia 613: 57–69. [Google Scholar]
  • Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19: 134–143. [Google Scholar]
  • Baselga A, Orme D. 2012. betapart: an R package for the study of beta diversity. Methods Ecol Evol 3: 808–812. [Google Scholar]
  • Bauernfeind E, Soldán A. 2012. The Mayflies of Europe (Ephemeroptera). Denmark: Apollo Books, 781 p. [Google Scholar]
  • Bazzanti M, Seminara M, Baldoni S, Stella A. 2000. Macroinvertebrates and environmental factors of some temporary and permanent ponds in Italy. Verh Int Verein Limnol 27: 936–941. [Google Scholar]
  • Bazzanti M, Della Bella V, Seminara M. 2003. Factors affecting macroinvertebrate communities in astatic ponds in central Italy. J Freshw Ecol 18: 537–548. [CrossRef] [EDP Sciences] [Google Scholar]
  • Beklioglu M, Tan CO. 2008. Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundam Appl Limnol/Arch Hydrobiol 171: 105–118. [CrossRef] [Google Scholar]
  • Biggs J, Corfield A, Walker D, Whitfield M, Williams P. 1994. New approaches to the management of ponds. Br Wildl 5: 273–287. [Google Scholar]
  • Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana XD. 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597(1): 53–69. [Google Scholar]
  • Boix D, García-Berthou E, Gascón S, Benejam L, Tornés E, Sala J, Benito J, Munné A, Solà C, Sabater S. 2010. Response of community structure to sustained drought in Mediterranean rivers. J Hydrol 383: 135–146. [CrossRef] [Google Scholar]
  • Bond NR, Lake PS, Arthington AH. 2008. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600: 3–16. [Google Scholar]
  • Boulton AJ. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48: 1173–1185. [Google Scholar]
  • Brock MA, Nielsen DL, Shiel RJ, Green JD, Langley JD. 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48: 1207–1218. [Google Scholar]
  • Céréghino R, Oertli B, Bazzanti M, Coccia C, Compin A, Biggs J, Bressi N, Grillas P, Hull A, Kalettka T, Scher O. 2012. Biological traits of European pond macroinvertebrates. Hydrobiologia 689: 51–61. [Google Scholar]
  • Chase JM. 2007. Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104: 17430–17434. [CrossRef] [Google Scholar]
  • Chessman BC. 2015. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshw Biol 60: 50–63. [Google Scholar]
  • Čiamporová-Zaťovičová Z, Hamerlík L, Šporka F, BituŠík P. 2010. Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. Hydrobiologia 648: 19–34. [Google Scholar]
  • Collins MR, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M. 2013. Long-term climate change: projections, commitments and irreversibility. In Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge University Press, pp. 1029–1136. [Google Scholar]
  • Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, Williams PJ. 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biol Conserv 74: 125–133. [Google Scholar]
  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao X, Chazdon RL, Longino JT. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5: 3–21. [CrossRef] [Google Scholar]
  • Della Bella V, Bazzanti M, Chiarottif F. 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquat Conserv: Mar Freshw Ecosyst 15: 583–600. [CrossRef] [Google Scholar]
  • Fritz KM, Dodds WK. 2004. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia 527: 99–112. [Google Scholar]
  • Furey PC, Nordin RN, Mazumder A. 2006. Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. J N Am Benthol Soc, 25, 19–31. [CrossRef] [Google Scholar]
  • Galindo MD, Mata AJ, Mazuelos N, Serrano L. 1994. Microcrustacean and rotifer diversity and richness relating to water temporality in dune ponds of the Doñana National Park. Verh Int Ver Theor Angew Limnol 25: 1350–1356. [Google Scholar]
  • García-Criado F, Martínez-Sanz C, Valladares LF, Fernández-Aláez C. 2017. Environment and spatial patterns as drivers of littoral macroinvertebrate assemblages in patchily distributed mountain lakes: contribution to typology design. Limnologica 62: 57–67. [Google Scholar]
  • Gérard C. 2000. Dynamics and structure of a benthic macroinvertebrate community in a lake after drought. J Freshw Ecol 15(1): 65–69. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gérard C. 2001. Consequences of a drought on freshwater gastropod and trematode communities. Hydrobiologia 459: 9–18. [Google Scholar]
  • Gérard C, Carpentier A, Paillisson J-M. 2008. Long-term dynamics and community structure of freshwater gastropods exposed to parasitism and other environmental stressors. Freshw Biol 53: 470–484. [Google Scholar]
  • Griswold MW, Berzinis RW, Crisman TL, Golladay SW. 2008. Impacts of climatic stability on the structural and functional aspects of macroinvertebrate communities after severe drought. Freshw Biol 53: 2465–2483. [Google Scholar]
  • Hsieh TC, Ma KH, Chao A. 2013. iNEXT online: interpolation and extrapolation (Version 1.3.0) [Software]. Available from [Google Scholar]
  • James RT. 1991. Microbiology and chemistry of acid lakes in Florida: I. Effects of drought and post-drought conditions. Hydrobiologia 213: 205–225. [Google Scholar]
  • Jeffries M. 1994. Invertebrate communities and turnover in wetland ponds affected by drought. Freshw Biol 32: 603–612. [Google Scholar]
  • Kim DG, Lee CY, Choi LJ, Kang HJ, Baek MJ, Kim JG, Bae YJ. 2014. Drought effects on the colonization of benthic macroinvertebrate communities in the early successional phases in experimental mesocosm wetlands. J Freshw Ecol 29: 507–524. [CrossRef] [Google Scholar]
  • Lake PS. 2003. Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48: 1161–1172. [Google Scholar]
  • Lake PS. 2011. Drought and aquatic ecosystems: effects and responses. Oxford, UK: Wiley-Blackwell, 400 p. [CrossRef] [Google Scholar]
  • Mackay F, Cyrus D, Russell K-L. 2010. Macrobenthic invertebrate responses to prolonged drought in South Africa's largest estuarine lake complex. Estuar Coast Shelf Sci 86: 553–567. [Google Scholar]
  • Martínez-Sanz C, Cenzano CS, Fernández-Aláez M, García-Criado F. 2012. Relative contribution of small mountain ponds to regional richness of littoral macroinvertebrates and the implications for conservation. Aquat Conserv: Mar Freshw Ecosyst 22(2): 155–164. [CrossRef] [Google Scholar]
  • Millán A, Sánchez-Fernández D, Abellán P, Picazo F, Carbonell JA, Lobo JM, Ribera I. 2014. Atlas de los coleópteros acuáticos de España peninsular. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente, 820 p. [Google Scholar]
  • Nicolet P, Biigs J, Fox G, Hodson MJ, Reynolds C, Whitfield M, Williams P. 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol Conserv 120: 261–278. [Google Scholar]
  • Nõges T, Nõges P. 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408–409: 277–283. [Google Scholar]
  • Sahuquillo M, Miracle MR, Morata SM, Vicente M. 2012. Nutrient dynamics in water and sediment of Mediterranean ponds across a wide hydroperiod gradient. Limnologica – Ecol Manag Inland Waters 42: 282–290. [CrossRef] [Google Scholar]
  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X. Changes in climate extremes and their impacts on the natural physical environment. In Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM, eds. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK/New York: Cambridge University Press, 2012, pp. 109–230. [Google Scholar]
  • Solimini AG, Della Bella V, Bazzanti M. 2005. Macroinvertebrate size spectra of Mediterranean ponds with differing hydroperiod length. Aquat Conserv: Mar Freshw Ecosyst 15: 601–611. [CrossRef] [Google Scholar]
  • Spencer M, Blaustein L, Schwartz SS, Cohen JE. 1999. Species richness and the proportion of predatory animal species in temporary freshwater pools: relationships with habitat size and permanence. Ecol Lett 2: 157–166. [Google Scholar]
  • Strachan SR, Chester ET, Robson BJ. 2014. Microrefuges from drying for invertebrates in a seasonal wetland. Freshw Biol 59: 2528–2538. [Google Scholar]
  • Sulmon C, van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C, Gérard C. 2015. Abiotic stressors and stress responses: what commonalities appear between species across biological organization levels? Environ Pollut 202: 66–77. [CrossRef] [PubMed] [Google Scholar]
  • Tierno de Figueroa JM, Sánchez-Ortega A, Membiela Iglesia P, Luzón-Ortega JM. 2003. Fauna Ibérica. Plecoptera. Madrid: Consejo Superior de Investigaciones Científicas, vol. 22, 408 p. [Google Scholar]
  • Wantzen K, Junk W, Rothhaupt K-O. 2008. An extension of the floodpulse concept (FPC) for lakes. In: Wantzen K, Rothhaupt K-O, Mörtl M, Cantonati M, Tóth LG, Fischer P, eds. Ecological effects of water-level fluctuations in lakes SE-15. Netherlands: Springer, pp. 151–170. [CrossRef] [Google Scholar]
  • Waterkeyn A, Grillas P, Vanschoenwinkel B, Brendonck LUC. 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshw Biol 53: 1808–1822. [Google Scholar]
  • Werner S, Rothhaupt K-O. 2008. Mass mortality of the invasive bivalve Corbicula fluminea induced by a severe low-water event and associated low water temperatures. Hydrobiologia 613: 143–150. [Google Scholar]
  • White MS, Xenopoulos MA, Hogsden K, Metcalfe RA, Dillon PJ. 2008. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region. Hydrobiologia 613: 21–31. [Google Scholar]
  • Wissinger SA, Oertli B, Rosset V. Invertebrate communities of alpine ponds. In: Batzer D, Boix D, eds. Invertebrates in freshwater wetlands. An international perspective on their ecology. Switzerland: Springer, 2016, pp. 55–103. [Google Scholar]
  • Woodward G, Perkins DM, Brown LE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B: Biol Sci 365: 2093–2106. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.