Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 137 - 150
DOI https://doi.org/10.1051/limn/2016003
Published online 21 March 2016
  • Akaike H., 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716–723. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Box G. and Cox D.R., 1964. An analysis of transformations. J. R. Stat. Soc., B, 26, 211–252. [Google Scholar]
  • Box G. and Jenkins G., 1976. Time Series Analysis: Forecasting and Control. revised edn., Prentice-Hall, Englewood Cliffs, N.J. [Google Scholar]
  • Cha Y., Park S.S., Kim K., Byeon M. and Stow C.A., 2014. Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model. Water Resour. Res., 50, 2518–2532. [CrossRef] [Google Scholar]
  • Chen Q., Guan T., Yun L., Li R. and Recknagel F., 2015. Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: feasibilities and potentials. Harmful Algae, 43, 58–65. [CrossRef] [Google Scholar]
  • Coad P., Cathers B., Ball J.E. and Kadiuczka R., 2014. Proactive management of estuarine algal blooms using an automated monitoring buoy coupled with an artificial neural network. Environ. Model. Softw., 61, 393–409. [CrossRef] [Google Scholar]
  • French T.D. and Petticrew E.L., 2007. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia, 575, 285–299. [CrossRef] [Google Scholar]
  • Hamilton G., McVinish R. and Mengersen K., 2009. Bayesian model averaging for harmful algal bloom prediction. Ecol. Appl., 19, 1805–1814. [CrossRef] [PubMed] [Google Scholar]
  • Iorgulescu I., Beven K.J. and Musy A., 2007. Flow, mixing, and displacement in using a data-based hydrochemical model to predict conservative tracer data, Water Resour. Res., 43, W03401. [CrossRef] [Google Scholar]
  • Jun K.S. and Kim J.S., 2011. The four major rivers restoration project: impacts on river flows. KSCE J. Civil Eng., 15, 217–224. [Google Scholar]
  • Kim D., Cao H., Jeong K., Recknagel F. and Joo G., 2007. Predictive function and rules for population dynamics of Microcystis aeruginosa in the regulated Nakdong River (South Korea), discovered by evolutionary algorithms. Ecol. Model., 203, 147–156. [CrossRef] [Google Scholar]
  • Lee J.H.W., Huang Y., Dickman M. and Jayawadema A.W., 2003. Neural network modeling of costal algal blooms. Ecol. Model., 159, 179–201. [CrossRef] [Google Scholar]
  • Liu L.M., 2006. Time Series Analysis and Forecasting. 2nd edn., Scientific Computing Associates Corp., Villa Park, Illinois. [Google Scholar]
  • Liu L.M. and Hanssens D.M., 1982. Identification of multiple input transfer function models. Commun. Stat.- Theory Methods, 11, 297–314. [CrossRef] [Google Scholar]
  • Malek S., Ahmad S.M.S., Singh S.K.K. and Salleh A., 2011. Assessment of predictive models for chlorophyll-a concentration of a tropical lake. BMC Bioinfor., 12(Suppl 13), S12. [CrossRef] [Google Scholar]
  • Mallin M.A., Paerl H.W. and Rudek J., 1991. Seasonal phytoplankton composition, productivity and biomass in the Neuse River estuary, North Carolina. Estuar. Coast. Shelf Sci., 32, 609–623. [CrossRef] [Google Scholar]
  • Marsili-Libelli S., 2004. Fuzzy prediction of the algal blooms in the Orbetello lagoon. Environ. Model. Softw., 19, 799–808. [CrossRef] [Google Scholar]
  • Muttil N. and Lee J.H.W., 2005. Genetic programming for analysis and real time prediction of coastal algal blooms. Ecol. Model., 189, 363–376. [CrossRef] [Google Scholar]
  • Novotny V. and Olem H., 1994. Water Quality Prevention, Identification and Management of Diffusive Pollution. Van Nostrand Reinhold, New York, 549–551. [Google Scholar]
  • Oh H.M., Ahn C., Lee J.W., Chon T.S., Choi K.H. and Park Y.S., 2007. Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Ecol. Model., 203, 109–118. [CrossRef] [Google Scholar]
  • OECD 2013. OECD Compendium of agri-environmental indicators, OECD Publishing. doi: 10.1787/9789264181151-en. [Google Scholar]
  • Padisák J., 2004. Phytoplankton. In: O'Sillivan P.E. and Reynolds C.S. (eds.), The Lakes Handbook Vol. 1 Limnology and Limnetic Ecology. Balckwell Publishing, Oxford, UK. [Google Scholar]
  • Park S.B., 2012. Algal blooms hit South Korea rivers. Nature. [Google Scholar]
  • Salas J.D., Delleur J.W., Yevjeuch V. and Lane W.L., 1988. Applied Modeling of Hydrologic Time Series. Water Resource Publication, Chelsea, Michigan. [Google Scholar]
  • Sin Y., Wetzel R.L. and Anderson I.C., 2000. Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). J. Plank. Res., 22, 1945–1960. [CrossRef] [Google Scholar]
  • Thomann R.V. and Mueller J.A., 1987. Principles of Surface Water Quality Modeling and Control. Harper and Row, New York. [Google Scholar]
  • U. S. Environmental Protection Agency 2002. User Manual for Environmental Fluid Dynamics Code Hydro Version (EFDC-HYDRO)., Tetra Tech, Inc., Fairfax, VA. [Google Scholar]
  • U. S. Environmental Protection Agency 2015. Application of BASIN/HSPF to Data-scarece Watersheds. EPA/600/R-15/007, Washington, DC. [Google Scholar]
  • Weiler M., McGlynn B.L., McGuire K.J. and McDonnell J., 2003. How does rainfall become runoff? A combined tracer and runoff transfer function approach. Water Resour. Res., 49, 1315, doi: 10.1029/2003WR002331. [Google Scholar]
  • Whitehead P.G., Howard A. and Arulmani C., 1997. Modeling algae growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural networks techniques. Hydrobiologia, 349, 39–46. [CrossRef] [Google Scholar]
  • WHO, 2003. Algae and cyanobacteria in fresh water. In: Bartram, J. and Rees G. (eds.), Guidelines for Safe Recreational Water Environments. Vol. I, Coastal and Fresh Water. World Health Organization, Geneva, 136–158. [Google Scholar]
  • Woo H., 2009. Korea to launch a major project on river rehabilitation. J. Hydr. Res., 47, 74–75. [Google Scholar]
  • Wu G. and Xu Z., 2011. Prediction of algal blooming using EFDC model: case study in the Daoxiang Lake. Ecol. Model., 222, 1245–1252. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.