Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 123 - 136
Published online 21 March 2016
  • Céréghino R. and Park Y.S., 2009. Review of the self-organizing map (SOM) approach in water resources: commentary. Environ. Model. Softw., 24, 945–947. [Google Scholar]
  • Chon T.S., Park Y.S. and Cha E.Y., 2000. Patterning of community changes in bentic macroinvertebrates collected from urbanized streams for the short term prediction by temporal artificial neuronal networks. In: Lek S. and Guegan, J.F. (eds.), Artificial Neuronal Networks: Application to Ecology and Evolution, Springer, Berlin, 99–114. [CrossRef] [Google Scholar]
  • Chuai X., Ding W., Chen X., Wang X., Miao A., Xi B., He L. and Yang L., 2011. Phosphorus release from cyanobacterial blooms in Meiliang Bay of Lake Taihu, China. Ecol. Eng., 37, 842–849. [CrossRef] [Google Scholar]
  • Chun K.C., Chang R.W., Williams G.P., Chang Y.S., Tomasko D., LaGory K., Ditmars J., Chun H.D. and Lee B.K., 1999. Water quality issues in the Nakdong River Basin in the Republic of Korea. Environ. Eng. Policy, 2, 131–143. [CrossRef] [Google Scholar]
  • de Figueiredo D., Reboleira A.S.P., Antunes S., Abrantes N., Azeiteiro U., Gonçalves F. and Pereira M., 2006. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate Lake. Hydrobiologia, 568, 145–157. [CrossRef] [Google Scholar]
  • Domingues R.B., Barbosa A.B. and Galvão H.M., 2013. River damming leads to decreased phytoplankton biomass and disappearance of cyanobacteria blooms. Estuar. Coast. Shelf Sci, 136, 129–138. [Google Scholar]
  • Duan H., Ma R. and Hu C., 2012. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China. Remote Sens. Environ., 126, 126–135. [CrossRef] [Google Scholar]
  • Giraudel J.L. and Lek S., 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol. Model., 146, 329–339. [CrossRef] [Google Scholar]
  • Graham J.L., Loftin K.A., Meyer M.T. and Ziegler A.C., 2010. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ. Sci. Technol., 44, 7361–7368. [CrossRef] [PubMed] [Google Scholar]
  • Ha J.-Y., Hanazato T., Chang K.-H., Jeong K.-S. and Kim D.-K., 2014. Assessment of the lake biomanipulation mediated by piscivorous rainbow trout and herbivorous daphnids using a self-organizing map: a case study in Lake Shirakaba, Japan. Ecol. Inform, 29, 182–191. [Google Scholar]
  • Ha K., Kim H.-W. and Joo G.-J., 1998. The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia, 369–370, 217–227. [CrossRef] [Google Scholar]
  • Ha K., Cho E., Kim H. and Joo G., 1999. Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Mar. Freshw. Res., 50, 89–94. [CrossRef] [Google Scholar]
  • Ha K., Jang M.-H. and Joo G.-J., 2002. Spatial and temporal dynamics of phytoplankton communities along a regulated river system, the Nakdong River, Korea. Hydrobiologia, 470, 235–245. [CrossRef] [Google Scholar]
  • Haykin S. and Lippmann R., 1994. Neural networks, a comprehensive foundation. Int. J. Neural Syst., 5, 363–364. [CrossRef] [Google Scholar]
  • Hong D.-G., Jeong K.-S., Kim D.-K. and Joo G.-J., 2014. Remedial strategy of algal proliferation in a regulated river system by integrated hydrological control: an evolutionary modelling framework. Mar. Freshw. Res., 65, 379–395. [CrossRef] [Google Scholar]
  • Hong S.S., Bang S.-W., Kim Y.-O. and Han M.-S., 2002. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the pal'tang reservoir, Korea. J. Freshw. Ecol., 17, 507–520. [CrossRef] [Google Scholar]
  • Hur M., Lee I., Tak B.-M., Lee H.J., Yu J.J., Cheon S.U. and Kim B.-S., 2013. Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea. Water Res., 47, 6973–6982. [CrossRef] [PubMed] [Google Scholar]
  • Islam M.N., Kitazawa D. and Park H.D., 2012. Numerical modeling on toxin produced by predominant species of cyanobacteria within the ecosystem of Lake Kasumigaura, Japan. Proc. Environ. Sci., 13, 166–193. [CrossRef] [Google Scholar]
  • Jeong K.-S., Kim D.-K., Whigham P. and Joo G.-J., 2003a. Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach. Ecol. Model., 161, 67–78. [CrossRef] [Google Scholar]
  • Jeong K.-S., Recknagel F. and Joo G.-J., 2003b. Prediction and elucidation of population dynamics of a blue-green Alga (Microcystis aeruginosa) and diatom (Stephanodiscus hantzschii) in the Nakdong River-Reservoir System (South Korea) by a recurrent artificial neural network. In: Recknagel F. (ed.), Ecological Informatics, Springer, Berlin, 196–213. [Google Scholar]
  • Jeong K.-S., Kim D.-K. and Joo G.-J., 2007. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res., 41, 1269–1279. [CrossRef] [PubMed] [Google Scholar]
  • Jeong K.-S., Kim D.-K., Shin H.-S., Yoon J.-D., Kim H.-W. and Joo G.-J., 2011. Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River. KSCE J. Civ. Eng., 15, 983–994. [CrossRef] [Google Scholar]
  • Joo G.J. and Jeong K.S., 2005. Modelling community changes of cyanobacteria in a flow regulated river (the lower Nakdong River, S. Korea) by means of a Self-Organizing Map (SOM). In: Lek S., Scardi M., Verdonschot P.M., Descy J.-P. and Park Y.-S. (eds.), Modelling Community Structure in Freshwater Ecosystems, Springer, Berlin, Heidelberg, 273–287. [CrossRef] [Google Scholar]
  • Joung S.-H., Oh H.-M., Ko S.-R. and Ahn C.-Y., 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 10, 188–193. [CrossRef] [Google Scholar]
  • Jung Y.J., Stenstrom M.K., Jung D.I., Kim L.H. and Min K.S., 2008. National pilot projects for management of diffuse pollution in Korea. Desalination, 226, 97–105. [CrossRef] [Google Scholar]
  • Kim B.J., Kripalani R.H., Oh J.H. and Moon S.E., 2002. Summer monsoon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Climatol., 72, 65–74. [CrossRef] [Google Scholar]
  • Kim D.-K., Cao H., Jeong K.-S., Recknagel F. and Joo G.-J., 2007. Predictive function and rules for population dynamics of Microcystis aeruginosa in the regulated Nakdong River (South Korea), discovered by evolutionary algorithms. Ecol. Model., 203, 147–156. [CrossRef] [Google Scholar]
  • Kim D.-K., Hong D.-G., Kim H.-W., Joo G.-J. and Jeong K.-S., 2011. Longitudinal patterns in limnological characteristics based on long-term ecological research in the Nakdong River. J. Ecol. Field Biol., 34, 39–47. [CrossRef] [Google Scholar]
  • Kim D.-K., Jeong K.-S., Chang K.-H., La G.-H., Joo G.-J. and Kim H.-W., 2012. Patterning zooplankton communities in accordance with annual climatic conditions in a regulated river system (Nakdong River, South Korea). Int. Rev. Hydrobiol., 97, 55–72. [CrossRef] [Google Scholar]
  • Kohonen T., 1997. Self-Organizing Maps, Springer, New York, 426 p. [Google Scholar]
  • Lee H.W., Bhang K.J. and Park S.S., 2010. Effective visualization for the spatiotemporal trend analysis of the water quality in the Nakdong River of Korea. Ecol. Inform., 5, 281–292. [CrossRef] [Google Scholar]
  • McCarthy M., James R.T., Chen Y., East T. and Gardner W., 2009. Nutrient ratios and phytoplankton community structure in the large, shallow, eutrophic, subtropical Lakes Okeechobee (Florida, USA) and Taihu (China). Limnology, 10, 215–227. [CrossRef] [Google Scholar]
  • Mihaljević M. and Stević F., 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat. Ecol., 45, 335–349. [CrossRef] [Google Scholar]
  • Mitrovic S.M., Hardwick L. and Dorani F., 2011. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. J. Plankton Res., 33, 229–241. [CrossRef] [Google Scholar]
  • Moisander P.H., Ochiai M. and Lincoff A., 2009. Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae, 8, 889–897. [CrossRef] [Google Scholar]
  • Normile D., 2010. Restoration or devastation? Science, 327, 1568–1570. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H.W. and Huisman J., 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep., 1, 27–37. [Google Scholar]
  • Paerl H.W. and Paul V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res., 46, 1349–1363. [CrossRef] [PubMed] [Google Scholar]
  • Park S.-B., Lee S.-K., Chang K.-H., Jeong K.-S. and Joo G.-J., 2002. The impact of monsoon rainfall (Changma) on the changes of water quality in the lower Nakdong River (Mulgeum). Korean J. Limnol., 35, 161–170. [Google Scholar]
  • Park Y.-S., Céréghino R., Compin A. and Lek S., 2003. Application of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Model., 160, 165–280. [CrossRef] [Google Scholar]
  • Park Y.-S., Kwon Y.-S., Hwang S.-J. and Park S., 2014. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ. Model. Softw., 55, 214–221. [CrossRef] [Google Scholar]
  • Prescott G.W., 1948. Objectionable algae with reference to the killing of fish and other animals. Hydrobiologia, 1, 1–13. [CrossRef] [Google Scholar]
  • Qin B., Zhu G., Gao G., Zhang Y., Li W., Paerl H. and Carmichael W., 2010. A drinking water crisis in lake Taihu, China: linkage to climatic variability and lake management. Environ. Manage., 45, 105–112. [Google Scholar]
  • Reynolds C., 2006. Nutrient uptake and assimilation in phytoplankton. Ecol. Phytoplankton, 145–175. [Google Scholar]
  • Seo D., Kim M. and Ahn J.H., 2012. Prediction of chlorophyll-a changes due to weir constructions in the Nakdong River using EFDC-WASP modelling. Environ. Eng. Res., 17, 95–102. [CrossRef] [Google Scholar]
  • Shapiro J., 1984. Blue-green dominance in lakes: the role and management significance of pH and CO2. Int. Rev. Ges. Hydrobiol. Hydrogr., 69, 765–780. [CrossRef] [Google Scholar]
  • Shin J.-H. and Chung J.-Y., 2011. The four major rivers restoration project in South Korea. Proc. ICE-Civ. Eng. Thomas Telford, 164, 19–26. [CrossRef] [Google Scholar]
  • Son H.-J., 2013a. Changes of dominant phytoplankton community in downstream of the Nakdong River: from 2002 to 2012. J. KSEE, 35, 289–293. [Google Scholar]
  • Son H.-J., 2013b. Long-term variations of phytoplankton biomass and water quality in the downstream of Nakdong River. J. KSEE, 35, 263–267. [Google Scholar]
  • Srivastava A., Ahn C.-Y., Asthana R.K., Lee H.-G. and Oh H.-M., 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. BioMed Res. Int., 2015, 8. [Google Scholar]
  • Stumpf R.P., Wynne T.T., Baker D.B. and Fahnenstiel G.L., 2012. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE, 7, e42444. [CrossRef] [PubMed] [Google Scholar]
  • Tencalla F.G., Dietrich D.R. and Schlatter C., 1994. Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol., 30, 215–224. [CrossRef] [Google Scholar]
  • Uriarte E.A. and Diaz M.F., 2006. Topology preservation in SOM. Proc. World Acad. Sci., Eng. Technol., 15, 187–190. [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9, 1–38. [Google Scholar]
  • Vesanto J. and Alhoniemi E., 2000. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600. [Google Scholar]
  • Wetzel R.G. and Likens G.E., 1991. Limnological Analyses (2nd edn), Springer-Verlag, New York, 391 p. [Google Scholar]
  • Xie L., Xie P., Li S., Tang H. and Liu H., 2003. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Res., 37, 2073–2080. [CrossRef] [PubMed] [Google Scholar]
  • Yihui D. and Chan J.C.L., 2005. The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys., 89, 117–142. [CrossRef] [Google Scholar]
  • Yokoyama A. and Park H.-D., 2002. Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan. Environ. Toxicol., 17, 424–433. [CrossRef] [PubMed] [Google Scholar]
  • Zar J.H., 1996. Biostatistical Analysis, Prentice-Hall, Inc., Upper Saddle River. [Google Scholar]
  • Zhang M., Duan H., Shi X., Yu Y. and Kong F., 2012. Contributions of meteorology to the phenology of cyanobacterial blooms: Implications for future climate change. Water Res., 46, 442–452. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.