Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 109 - 121
Published online 21 March 2016
  • Agasild H., Zingel P., Tonno I., Haberman J. and Noges T., 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Vortsjarv (Estonia). Hydrobiologia, 584, 167–177. [CrossRef] [Google Scholar]
  • Anneville O., Ginot V., Druart J.C. and Angeli N., 2002. Long-term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach. J. Plank. Res., 24, 993–1007. [CrossRef] [Google Scholar]
  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater (20th edn), American Public Health Association, Washington, DC. [Google Scholar]
  • Behrendt H., 1990. The chemical-composition of phytoplankton and zooplankton in an eutrophic shallow lake. Arch. Hydrobiol., 118, 129–145. [Google Scholar]
  • Bonecker C.C., Nagae M.Y., Bletller M.C.M., Velho L.F.M. and Lansac-Toha F.A., 2007. Zooplankton biomass in tropical reservoirs in southern Brazil. Hydrobiologia, 579, 115–123. [CrossRef] [Google Scholar]
  • Brander K.M., 2007. Global fish production and climate change. Proc. Natl. Acad. Sci. USA, 104, 19709–19714. [CrossRef] [Google Scholar]
  • Canal J., Laffaille P., Gilbert F., Lauzeral C. and Buisson L., 2015. Influence of temperature on surface sediment disturbance by freshwater fish: a microcosm experiment. Ann. Limnol. - Int. J. Limnol., 51, 179–188. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chen J.X. and Guan C.T., 2006. The present situation and development trend analysis of freshwater cage aquaculture in China. Sci. Fish Farm., 2006, 3–4. [Google Scholar]
  • Chen K.N., Bao C.H. and Zhou W.P., 2009. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment. Ecol. Eng., 35, 1646–1655. [CrossRef] [Google Scholar]
  • Chiang S.-C. and Du N.-S., 1979. Fauna Sinica, Crustacea, Freshwater Cladocera, Science Press, Beijing. [Google Scholar]
  • Culver, D.A., Boucherle M.M., Bean D.J. and Fletcher J.W., 1985. Biomass of freshwater crustacean zooplankton from length–weight regressions. Can. J. Fisher. Aquat. Sci., 42, 1380–1390. [CrossRef] [Google Scholar]
  • Ding W.X., Shen H.M., Zhu H.G., Lee B.L. and Ong C.N., 1999. Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutat. Res. – Genet. Toxicol. Environ. Mutagen., 442, 69–77. [CrossRef] [Google Scholar]
  • Dokulil M.T. and Teubner K., 2000. Cyanobacterial dominance in lakes. Hydrobiologia, 438, 1–12. [CrossRef] [Google Scholar]
  • Dumont H., Van de Velde I. and Dumont S., 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 75–97. [CrossRef] [PubMed] [Google Scholar]
  • Figueredo C.C. and Giani A., 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshw. Biol., 50, 1391–1403. [CrossRef] [Google Scholar]
  • Guo L.G. and Li Z.J., 2003. Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Yangtze River basin of China. Aquaculture, 226, 201–212. [CrossRef] [Google Scholar]
  • Guo L.G., Li Z.J., Xie P. and Ni L.Y., 2009. Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquacult. Int., 17, 229–241. [CrossRef] [Google Scholar]
  • Haney J.F., 1987. Field studies on zooplankton–cyanobacteria interactions. N. Z. J. Mar. Freshw. Res., 21, 467–475. [Google Scholar]
  • Hansson L.A., Annadotter H., Bergman E., Hamrin S.F., Jeppesen E., Kairesalo T., Luokkanen E., Nilsson P.Å., Søndergaard M. and Strand J., 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems, 1, 558–574. [CrossRef] [Google Scholar]
  • Hillebrand H., Dürselen C.-D., Kirschtel D., Pollingher U. and Zohary T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403–424. [Google Scholar]
  • Hu H. and Wei Y., 2006. The Freshwater Algae of China: Systematics, Taxonomy and Ecology, Science Press, Beijing. [Google Scholar]
  • Hu H.J., Li Y.Y., Wei Y.X., Zhu H.Z., Chen J.Y. and Shi Z.X., 1980. The Freshwater Algae of China, Shanghai Science and Technology Press, Shanghai. [Google Scholar]
  • Jeppesen E., Sondergaard M., Kanstrup E., Petersen B., Eriksen R.B., Hammershoj M., Mortensen E., Jensen J.P. and Have A., 1994. Does the impact of nutrients on the biological structure and function of brackish and fresh-water lakes differ. Hydrobiologia, 275, 15–30. [CrossRef] [Google Scholar]
  • Jin X. and Tu Q., 1990. Standard Methods for Observation and Analysis in Lake Eutrophication (2nd edn), Chinese Environmental Science Press, Beijing. [Google Scholar]
  • Ke Z.X., Xie P. and Guo L.G., 2009. Impacts of two biomanipulation fishes stocked in a large pen on the plankton abundance and water quality during a period of phytoplankton seasonal succession. Ecol. Eng., 35, 1610–1618. [CrossRef] [Google Scholar]
  • Kung H.-T. and Ying L.-G., 1991. A study of lake eutrophication in Shanghai, China. Geogr. J., 157, 45–50. [CrossRef] [Google Scholar]
  • Latja R. and Salonen K., 1978. Carbon analysis for the determination of individual biomass of planktonic animals. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 20, 2556–2560. [Google Scholar]
  • Lazzaro X., Bouvy M., Ribeiro R.A., Oliviera V.S., Sales L.T., Vasconcelos A.R.M. and Mata M.R., 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshw. Biol., 48, 649–668. [CrossRef] [Google Scholar]
  • Lee R.E., 1989. Phycology (2nd edn), Cambridge University Press, Cambridge, New York. [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data Using CANOCO, Cambridge University Press, Cambridge, UK, New York. [Google Scholar]
  • Lin W.Q., Lu S.Q. and Chen Y.Z., 2010. An application of eco-dynamic model in evaluating eutrophication control measures for Dianshan lake in Shanghai. Shanghai Environ. Sci., 29, 1–10. [Google Scholar]
  • Liu J.S., Cui Y.B. and Liu J.K., 1997. Advances in studies on the effect of cage culture on the environment. Acta Hydrobiol. Sin., 21, 174–184. [Google Scholar]
  • Lu K.H., Jin C.H., Dong S.L., Gu B.H. and Bowen S.H., 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia, 568, 111–120. [Google Scholar]
  • Lu M., Xie P., Tang H., Shao Z. and Xie L., 2002. Experimental study of trophic cascade effect of silver carp (Hypophthalmichthys molitrixon) in a subtropical lake, Lake Donghu: on plankton community and underlying mechanisms of changes of crustacean community. Hydrobiologia, 487, 19–31. [CrossRef] [Google Scholar]
  • McCarthy M.J., Lavrentyev P.J., Yang L.Y., Zhang L., Chen Y.W., Qin B.Q. and Gardner W.S., 2007. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia, 581, 195–207. [CrossRef] [Google Scholar]
  • McCauley E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In: Downing J.A. and Rigler F.H. (eds.), A Manual on Methods for the Assessment of Secondary Productivity in Freshwaters, Blackwell Scientific Publications, Oxford, 228–265. [Google Scholar]
  • Mehner T., Arlinghaus R., Berg S., Dorner H., Jacobsen L., Kasprzak P., Koschel R., Schulze T., Skov C., Wolter C. and Wysujack K., 2004. How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zone. Fisher. Manage. Ecol., 11, 261–275. [CrossRef] [Google Scholar]
  • Meijer M.L., de Boois I., Scheffer M., Portielje R. and Hosper H., 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia, 408, 13–30. [CrossRef] [Google Scholar]
  • Nash C.E., 2001. The net-pen salmon farming industry in the Pacific Northwest. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-49. [Google Scholar]
  • Naylor R.L., Goldburg R.J., Primavera J.H., Kautsky N., Beveridge M.C.M., Clay J., Folke C., Lubchenco J., Mooney H. and Troell M., 2000. Effect of aquaculture on world fish supplies. Nature, 405, 1017–1024. [CrossRef] [PubMed] [Google Scholar]
  • Olin M., Rask M., Ruuhijarvi J., Keskitalo J., Horppila J., Tallberg P., Taponen T., Lehtovaara A. and Sammalkorpi I., 2006. Effects of biomanipulation on fish and plankton communities in ten eutrophic lakes of southern Finland. Hydrobiologia, 553, 67–88. [CrossRef] [Google Scholar]
  • Pannard A., Bormans M. and Lagadeuc Y., 2007. Short-term variability in physical forcing in temperate reservoirs: effects on phytoplankton dynamics and sedimentary fluxes. Freshw. Biol., 52, 12–27. [CrossRef] [Google Scholar]
  • Perrow M.R., Meijer M.L., Dawidowicz P. and Coops H., 1997. Biomanipulation in the shallow lakes: state of the art. Hydrobiologia, 342, 355–365. [CrossRef] [Google Scholar]
  • Pinto-Coelho R., Pinel-Alloul B., Méthot G. and Havens K.E., 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Can. J. Fisher. Aquat. Sci., 62, 348–361. [CrossRef] [Google Scholar]
  • Richardson T.L., Gibson C.E. and Heaney S.I., 2000. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshw. Biol., 44, 431–440. [Google Scholar]
  • Schindler D.W., Hecky R.E., Findlay D.L., Stainton M.P., Parker B.R., Paterson M.J., Beaty K.G., Lyng M. and Kasian S.E.M., 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA, 105, 11254–11258. [Google Scholar]
  • Shapiro J. and Wright D.I., 1984. Lake restoration by biomanipulation: round Lake, Minnesota, the first two years. Freshw. Biol., 14, 371–383. [CrossRef] [Google Scholar]
  • Shapiro J., Lamarra V.A. and Lynch M., 1975. Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik P.L. and Fox J.L. (eds.), University of Florida, Gainesville, 85–96. [Google Scholar]
  • Shen C.J., 1979. Fauna sinica, Crustacea, Freshwater Copepoda, Science Press, Beijing. [Google Scholar]
  • Shi M. and Liu H., 1989. Effects of cage aquaculture on water quality in Dianshan Lake. Rural Eco-environ., 3, 7–11. [Google Scholar]
  • Sin Y. and Jeong B., 2015. Short-term variations of phytoplankton communities in response to anthropogenic stressors in a highly altered temperate estuary. Estuar. Coast. Shelf Sci., 156, 83–91. [CrossRef] [Google Scholar]
  • Smith V.H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221, 669–671. [CrossRef] [PubMed] [Google Scholar]
  • Starling F., Beveridge M., Lazzaro X. and Baird D., 1998. Silver carp biomass effects on the plankton community in paranoa reservoir (Brazil) and an assessment of its potential for improving water quality in lacustrine environments. Int. Rev. Hydrobiol., 83, 499–507. [Google Scholar]
  • State EPA of China, 2002. Monitoring and Analysis Methods for Water and Wastewater (4th edn), China Environmental Science Press, Beijing. [Google Scholar]
  • Su L., Lin W., Yang Y. and Zhu Y., 2011. Fluxes of nitrogen and phosphorus releasing from sediment in Dianshan Lake. Environ. Pollut. Control, 33, 32–35. [Google Scholar]
  • Wang J.J., 1961. The Freshwater rotifer Fauna of China, Science Press, Beijing. [Google Scholar]
  • Xie P. and Liu J., 2001. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake. Sci. World, 1, 337–356. [CrossRef] [Google Scholar]
  • Xu H., Paerl H.W., Qin B.Q., Zhu G.W. and Gao G., 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr., 55, 420–432. [CrossRef] [Google Scholar]
  • Xu Z., Lin X., Lin Q., Yang Y. and Wang Y., 2007. Nitrogen, phosphorus, and energy waste outputs of four marine cage-cultured fish fed with trash fish. Aquaculture, 263, 130–141. [CrossRef] [Google Scholar]
  • Zhang J., Zhang Y., Li Q., Yu M., Ren J., Li P. and Wang K., 2014. Analysis of precipitation variation characteristics in Shanghai City over period from 1971 to 2010. Water Resour. Prot., 30, 47–52. [CrossRef] [Google Scholar]
  • Zhang M., Zhou Y., Xie P., Xu J., Li J., Zhu D. and Xia T., 2004. Impacts of cage-culture of Oreochromis niloticus on organic matter content, fractionation and sorption of phosphorus, and alkaline phosphatase activity in a hypereutrophic lake, People's Republic of China. Bull. Environ. Contamin. Toxicol., 73, 927–932. [CrossRef] [Google Scholar]
  • Zhao S.-Y., Sun Y.-P., Lin Q.-Q. and Han B.-P., 2012. Effects of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community of a deep, tropical reservoir: an enclosure experiment. Freshw. Biol., 58, 1–14. [Google Scholar]
  • Zhuge Y., Huang X. and Koste W., 1998. Rotifera recorded from China, 1893–1997, with remarks on their composition and distribution. Int. Rev. Hydrobiol., 83, 217–232. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.