Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 151 - 162
Published online 21 March 2016
  • Agostinho A.A., Gomes L.C., Verissimo S. and Okada E.K., 2004. Flood regime, dam regulation and fish in the Upper Parana River: effects on assemblage attributes, reproduction and recruitment. Rev. Fish Biol. Fish., 14, 11–19. [CrossRef] [Google Scholar]
  • Ahrenstorff T.D., Sass G.G. and Helmus M.R., 2009. The influence of littoral zone coarse woody habitat on home range size, spatial distribution, and feeding ecology of largemouth bass (Micropterus salmoides). Hydrobiologia, 623, 223–233. [CrossRef] [Google Scholar]
  • Albert J.S. and Reis R.E., 2011. Historical Biogeography of Neotropical Freshwater Fishes, University of California Press, Berkeley, California, 308 p. [Google Scholar]
  • Alhoniemi E., Himberg J., Parhankangas J. and Vesanto J., 2000. SOM Toolbox. Available online at: [Google Scholar]
  • Anderson E.P., Freeman M.C. and Pringle C.M., 2006. Ecological consequences of hydropower development in Central America: impacts of small dams and water diversion on neotropical stream fish assemblages. River Res. Appl., 22, 397–411. [CrossRef] [Google Scholar]
  • Araújo F.G., Pinto B.C.T. and Teixeira T.P., 2009. Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: evaluating environmental influences and some concepts in river ecology. Hydrobiologia, 618, 89–107. doi: [CrossRef] [Google Scholar]
  • Bacheler N.M., Neal J.W. and Noble R.L., 2004. Diet overlap between native bigmouth sleepers (Gobiomorus dormitor) and introduced predatory fishes in a Puerto Rico reservoir. Ecol. Freshw. Fish., 13, 111–118. [CrossRef] [Google Scholar]
  • Bae M.J., Li F., Kwon Y.S., Chung N., Choi H., Hwang S.J. and Park Y.S., 2014. Concordance of diatom, macroinvertebrate and fish assemblages in streams at nested spatial scales: implications for ecological integrity. Ecol. Indic., 47, 89–101. [CrossRef] [Google Scholar]
  • Bae M.J., Merciai R., Benejam L., Sabater S. and García-Berthou E., 2015. Small weirs, big effects: disruption of water temperature regimes with hydrological alteration in a mediterranean stream. River Res. Appl. (In press, available: 10.1002/rra.2871). [Google Scholar]
  • Bain M.B., Finn J.T. and Booke H.E., 1988. Streamflow regulation and fish community structure. Ecology, 69, 382–392. [CrossRef] [Google Scholar]
  • Bebnarek A.T., 2001. Undamming rivers: a review of the ecological impacts of dam removal. Environ. Manage., 27, 803–814. [CrossRef] [PubMed] [Google Scholar]
  • Bonada N., Rieradevall M. and Prat N., 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia, 589, 91–106. [CrossRef] [Google Scholar]
  • Bunn S.E., and Arthington A.H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage., 30, 492–507. [CrossRef] [PubMed] [Google Scholar]
  • Carpenter S.R. and Kitchell J.F. (eds), 1993. The Trophic Cascade in Lakes, Cambridge University Press, New York. [CrossRef] [Google Scholar]
  • Céréghino R. and Park Y.S., 2009. Review of the self-organizing map (SOM) approach in water resources: commentary. Environ. Modell. Softw., 24, 945–947. [Google Scholar]
  • Chaves M.L., Rieradevall M., Chainho P., Costa M.J. and Prat N., 2008. Macroinvertebrate communities of non-glacial high altitude intermittent streams. Freshw. Biol., 53, 55–76. [Google Scholar]
  • Copp G.H., 1990. Effect of regulation on 0+ fish recruitment in the Great Ouse, a lowland river. Regul. Rivers Res. Manage., 5, 251–263. [CrossRef] [Google Scholar]
  • Cushman R.M., 1985. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. Fish. Manage., 5, 330–339. [CrossRef] [Google Scholar]
  • Dauble D.D. and Geist D.R., 2000. Comparison of mainstem spawning habitats for two populations of fall Chinook salmon in the Columbia River Basin. Regul. Rivers Res. Manage., 16, 345–361. [CrossRef] [Google Scholar]
  • Dufrêne M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Falke J.A. and Gido K.B., 2006. Spatial effects of reservoirs on fish assemblages in Great Plains streams in Kansas, USA. River Res. Appl., 22, 55–68. [CrossRef] [Google Scholar]
  • García-Berthou E., 2002. Ontogenetic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). Int. Rev. Hydrobiol., 87, 353–363. [CrossRef] [Google Scholar]
  • Gasith A. and Resh V.H., 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Syst., 30, 51–81. [Google Scholar]
  • Gehrke P.C., Gilligan D.M. and Barwick M., 2002. Changes in fish communities of the Shoalhaven River 20 years after construction of Tallowa Dam, Australia. River Res. Appl., 18, 265–286. [CrossRef] [Google Scholar]
  • Helms B.S., Werneke D.C., Gangloff M.M., Hartfield E.E. and Feminella J.W., 2011. The influence of low-head dams on fish assemblages in streams across Alabama. J. North Am. Benthol. Soc., 30, 1095–1106. [CrossRef] [Google Scholar]
  • Hong Y.P. and Son Y.M., 2003. Studies on the interspecific association of community including Micropterus salmoides population, introduced fish in Korea. Korean J. Ichthyol., 15, 61–68. [Google Scholar]
  • Johnson P.T.J., Olden J.D. and Zanden M.J.V., 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ., 6, 357–363. [CrossRef] [Google Scholar]
  • Kiernan J.D., Moyle P.B. and Crain P.K., 2012. Restoring native fish assemblages to a regulated California stream using the natural flow regime concept. Ecol. Appl., 22, 1472–1482. [CrossRef] [PubMed] [Google Scholar]
  • Kim D.H., Hwang S.O., Yang H.J., Jeon S.R., Choi S.S., Kim I.S. and Choi C.G., 1996. Studies on the Distribution and Effect of the Exotic Fishes in Dam Reservoir, Korean Water Resources Corporation, Daejeon, Korea, 258 p. [Google Scholar]
  • Kim I.S. and Park J.Y., 2002. Freshwater Fish of Korea, Kyohak Publishing, Seoul, 467 p. [Google Scholar]
  • Kinsolving A.D. and Bain M.B., 1993. Fish assemblage recovery along a riverine disturbance gradient. Ecol. Appl., 3, 531–544. [CrossRef] [PubMed] [Google Scholar]
  • Ko M.H., Park J.Y. and Lee Y.J., 2008. Feeding habits of an introduced large mouth bass, Micropterus salmoides (Perciformes; Centrarchidae), and its influence on ichthyofauna in the Lake Okjeong, Korea. Korean J. Ichthyol., 20, 36–44. [Google Scholar]
  • Kohonen T., 2001. Self-Organizing Maps (3rd edn), Springer, Berlin. [CrossRef] [MathSciNet] [Google Scholar]
  • Konrad C.P., Olden J.D., Lytle D.A., Melis T.S., Schmidt J.C., Bray E.N., Freeman M.C., Gido K.B., Hemphill N.P., Kennard M.J., McMullen L.E., Mims M.C., Pyron M., Robinson C.T. and Williams J.G., 2011. Large-scale flow experiments for managing river systems. BioScience, 61, 948–959. [CrossRef] [Google Scholar]
  • Kruk A. and Penczak T., 2003. Impoundment impact on populations of facultative riverine fish. Int. J. Limnol., 39, 197–210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lee W.O., Yang H., Yoon S.W. and Park J.Y., 2009. Study on the feeding habits of Micropterus salmoides in Lake Okjeong and Lake Yongdam, Korea. Korean J. Ichthyol., 21, 200–207. [Google Scholar]
  • Legendre P. and Legendre L., 1998. Numerical Ecology, Elsevier, Amsterdam. [Google Scholar]
  • Lowe S., Browne M., Boudjelas S. and De Poorter M., 2000. 100 of the world's worst invasive alien species. A selection from the global invasive species database. ISSG, SSC and IUCN. Available online at: [Google Scholar]
  • Magilligan F.J. and Nislow K.H., 2005. Changes in hydrologic regime by dams. Geomorphology, 71, 61–78. [CrossRef] [Google Scholar]
  • Mantel N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res., 27, 209–220. [Google Scholar]
  • March J.G., Benstead J.P., Pringle C.M. and Scatena F.N., 2003. Damming tropical island streams: problems, solutions, and alternatives. BioScience, 53, 1069–1078. [CrossRef] [Google Scholar]
  • Marchetti M.P. and Moyle P.B., 2001. Effects of flow regime on fish assemblages in a regulated California stream. Ecol. Appl., 11, 530–539. [CrossRef] [Google Scholar]
  • Matthews W.J., 1998. Patterns in Freshwater Fish Ecology, Chapman and Hall, New York. [Google Scholar]
  • McCune B. and Mefford M.J., 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5. MjM Software, Gleneden Beach, Oregon, USA. MjM Software, Gleneden Beach, Oregon. [Google Scholar]
  • McLaughlin R.L., Porto L., Noakes D.L.G., Baylis J.R., Carl L.M., Dodd H.R., Goldstein J.D., Hayes D.B. and Randall R.G., 2006. Effects of low-head barriers on stream fishes: taxonomic affiliations and morphological correlates of sensitive species. Can. J. Fish. Aquat. Sci., 63, 766–779. [CrossRef] [Google Scholar]
  • Mims M.C. and Olden J.D., 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 93, 35–45. [CrossRef] [PubMed] [Google Scholar]
  • Mims M.C. and Olden J.D., 2013. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshw. Biol., 58, 50–62. [CrossRef] [Google Scholar]
  • MOE/NEIR (Ministry of Environment/National Institute of Environmental Research), 2008. The Survey and Evaluation of Aquatic Ecosystem Health in Korea, MOE/NIER, Inchon, Korea (in Korean with English summary). [Google Scholar]
  • Moyle P.B., 1986. Fish introductions into North America: patterns and ecological impact. In: Ecology of biological invasions of North America and Hawaii, Springer, New York, pp. 27–43. [CrossRef] [Google Scholar]
  • Moyle P.B., 2002. Inland Fishes of California, University of California Press, Berkeley, California, USA. [Google Scholar]
  • Moyle P.B. and Light T., 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biol. Conserv., 78, 149–161. [Google Scholar]
  • Moyle P.B. and Marchetti M.P., 2006. Predicting invasion success: freshwater fishes in California as a model. BioScience, 56, 515–524. [CrossRef] [Google Scholar]
  • Na J.H., 2014. Inland fisheries stock management and estimation of potential yield in Geo-san Lake. Doctor Thesis, Pukyong National University, Korea. [Google Scholar]
  • Neraas L.P. and Spruell P., 2001. Fragmentation of riverine systems: the genetic effects of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system. Mol. Ecol., 10, 1153–1164. [CrossRef] [PubMed] [Google Scholar]
  • NFRDI, 2010. Distribution, utilization and management strategy of introduced freshwater fish. Report of National Fisheries Research and Development Institute, Busan, 121 p. [Google Scholar]
  • NFRDI, 2013. Development of inland fisheries using ecosystem management approach and biodiversity increasing research. Report of National Fisheries Research and Development Institute, Busan, 76 p. [Google Scholar]
  • Oden N.L. and Sokal R.R., 1986. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst. Zool., 35, 608–617. [CrossRef] [Google Scholar]
  • Oksanen J., Kindt R., Legendre P. and O'Hara B., 2007. Vegan: community ecology package. R package version 1.8-5, Accessed online 10 April 2007, [Google Scholar]
  • Olden J.D., Jackson D.A. and Peres-Neto P.R., 2001. Spatial isolation and fish communities in drainage lakes. Oecologia, 127, 572–585. [CrossRef] [PubMed] [Google Scholar]
  • Ostrand K.G. and Wilde G.R., 2002. Seasonal and spatial variation in a prairie stream-fish assemblage. Ecol. Freshw. Fish, 11, 137–149. [CrossRef] [Google Scholar]
  • Peterson W.T. and Keister J.E., 2003. Interannual variability in copepod community composition at a coastal station in the northern California Current: a multivariate approach. Deep Sea Res., 50, 2499–2517. [CrossRef] [Google Scholar]
  • Poff N.L. and Hart D.D., 2002. How dams vary and why it matters for the emerging science of dam removal. BioScience, 52, 659–668. [CrossRef] [Google Scholar]
  • Poff N.L., Olden J.D., Merritt D.M. and Pepin D.M., 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA, 104, 5732–5737. [CrossRef] [Google Scholar]
  • Poulet N., 2007. Impact of weirs on fish communities in a piedmont stream. River Res. Appl., 23, 1038–1047. [CrossRef] [Google Scholar]
  • Power M.E., Parker M.S. and Dietrich W.E., 2008. Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecol. Monogr., 78, 263–282. [CrossRef] [Google Scholar]
  • Schmidt J.C., Webb R.H., Valdez R.A., Marzolf G.R. and Stevens L.F., 1998. Science and values in river restoration in the grand canyon. BioScience, 48, 735–747. [CrossRef] [Google Scholar]
  • Sokal R.R. and Rohlf F.J., 1995. Biometry: the Principles and Practice of Statistics in Biological Research (3rd edn), W.H. Freeman and Co., New York. [Google Scholar]
  • StatSoft, Inc., 2005. STATISTICA (data analysis software system), version 8, [Google Scholar]
  • The Mathworks, 2001. MATLAB, Version 6.1; Software for Technical Computation, The Mathworks Inc., Natick, MA, USA. [Google Scholar]
  • Travnicheck V.H., Bain M.B. and Maceina M.J., 1995. Recovery of a warm water fish assemblage after the initiation of minimum-flow release downstream from a hydroelectric dam. Trans. Am. Fish. Soc., 124, 836–844. [CrossRef] [Google Scholar]
  • Vesanto J., 2000. Neural network tool for data mining: SOM Toolbox. In: Proceedings of Symposium on Tool Environments and Development Methods for Intelligent Systems (TOOLMET2000). Oulun yliopistopaino, Oulu, Finland, 184–196. [Google Scholar]
  • Vila-Gispert A., García-Berthou E. and Moreno-Amich R., 2002. Fish zonation in a Mediterranean stream: effects of human disturbances. Aquat. Sci., 64, 163–170. [CrossRef] [Google Scholar]
  • Welcomme R.L. 1992., River conservation – future prospects. In: Boon P.J., Calow P. and Petts G.E. (eds.), River Conservation and Management, John Wiley & Sons, Chichester, UK, 454–462. [Google Scholar]
  • Yarnell S.M., Viers J.H. and Mount J.F., 2010. Ecology and management of the spring snowmelt recession. BioScience, 60, 114–127. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.